Ultra-QuickSort
Time Limit: 7000MS Memory Limit: 65536K
Total Submissions: 62659 Accepted: 23342
Description
In this problem, you have to analyze a particular sorting algorithm. The algorithm processes a sequence of n distinct integers by swapping two adjacent sequence elements until the sequence is sorted in ascending order. For the input sequence
9 1 0 5 4 ,
Ultra-QuickSort produces the output
0 1 4 5 9 .
Your task is to determine how many swap operations Ultra-QuickSort needs to perform in order to sort a given input sequence.
Input
The input contains several test cases. Every test case begins with a line that contains a single integer n < 500,000 – the length of the input sequence. Each of the the following n lines contains a single integer 0 ≤ a[i] ≤ 999,999,999, the i-th input sequence element. Input is terminated by a sequence of length n = 0. This sequence must not be processed.
Output
For every input sequence, your program prints a single line containing an integer number op, the minimum number of swap operations necessary to sort the given input sequence.
Sample Input
5
9
1
0
5
4
3
1
2
3
0
Sample Output
6
0
Source
Waterloo local 2005.02.05
题意:
求逆序对。。。
经典问题,利用归并排序,树状数组等都可以解决
用归并就是要注意有相同元素的时候,a[R]和a[L]相同时应该让a[L]先出去
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
using namespace std;
typedef long long LL;
const int maxn=5e5+5;
LL ans;
int a[maxn],n,b[maxn];
inline void merge(int l,int r)
{
if(l>=r)return;
int mid=(l+r)>>1;
merge(l,mid);
merge(mid+1,r);
int L=l,R=mid+1;
int cnt=l;
while(L<=mid||R<=r)
{
if(L>mid||(a[R]<a[L]&&R<=r))
{
b[cnt++]=a[R++];
ans+=mid-L+1;
}
else b[cnt++]=a[L++];
}
for(int i=l;i<=r;++i)a[i]=b[i];
}
int main()
{
while(1)
{
scanf("%d",&n);
if(n==0)break;
for(int i=1;i<=n;++i)scanf("%d",&a[i]);
ans=0;
merge(1,n);
printf("%lld\n",ans);
}
return 0;
}