Suppose you have a long flowerbed in which some of the plots are planted and some are not. However, flowers cannot be planted in adjacent plots - they would compete for water and both would die.
Given a flowerbed (represented as an array containing 0 and 1, where 0 means empty and 1 means not empty), and a number n, return if n new flowers can be planted in it without violating the no-adjacent-flowers rule.
Example 1:
Input: flowerbed = [1,0,0,0,1], n = 1 Output: True
Example 2:
Input: flowerbed = [1,0,0,0,1], n = 2 Output: False
Note:
- The input array won't violate no-adjacent-flowers rule.
- The input array size is in the range of [1, 20000].
- n is a non-negative integer which won't exceed the input array size.
思路:这是一道规律题
两个1之间0的个数和可插入的1个数相关,相关关系为sum = (count-1)/2,count为两个1之间局部0的个数,sum为这一局部可插入1的个数。
注意两个边界,如001可插入1,01则不可插入,解决办法是两侧补零。
class Solution {
public boolean canPlaceFlowers(int[] flowerbed, int n) {
//为了防止001001,100100,10,01这几种特殊情况,在数列两端各加一个0
StringBuilder sb = new StringBuilder();
sb.append(0);
for(int i = 0;i<flowerbed.length;i++){
sb.append(flowerbed[i]);
}
sb.append(0);
String s = sb.toString();
int sum = 0;//记录全局可容纳数
int count = 0;//记录局部0的个数,局部可容纳数 = (局部0的个数 - 1 )/2,
//101 :0
//1001 :0
//10001 :1
//100001 :1
//1000001 : 2
//10000001 : 2
//...规律如上,零的个数:可容纳数
for(int i = 0 ;i < s.length(); i++){
if(s.charAt(i)=='1'){
sum += (count-1)/2;
count = 0;
}else{
count ++;
}
}
sum += (count -1) /2;//最后一组局部在上面for循环中未添加,添加上。如100100
return (n<=sum)?true:false;
}
}