1017 A Mathematical Curiosity

本文解析了一道关于寻找整数对(a, b)的数学竞赛题,使得(a^2+b^2+m)/(ab)为整数,通过示例输入输出展示了问题解决过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1017 A Mathematical Curiosity

Time Limit: 2000/1000 MS(Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 27084    Accepted Submission(s): 8616


Problem Description

Given two integers n and m, count the numberof pairs of integers (a,b) such that 0 < a < b < n and (a^2+b^2+m)/(ab) is an integer.

This problem contains multiple test cases!

The first line of a multiple input is an integer N, then a blank line followedby N input blocks. Each input block is in the format indicated in the problemdescription. There is a blank line between input blocks.

The output format consists of N output blocks. There is a blank line betweenoutput blocks.

 

 

Input

You will be given a number of cases in theinput. Each case is specified by a line containing the integers n and m. Theend of input is indicated by a case in which n = m = 0. You may assume that 0< n <= 100.

 

 

Output

For each case, print the case number as wellas the number of pairs (a,b) satisfying the given property. Print the outputfor each case on one line in the format as shown below.

 

 

Sample Input

1

 

10 1

20 3

30 4

0 0

 

 

Sample Output

Case 1: 2

Case 2: 4

Case 3: 5

 

这个题目最纠结的地方是输出格式上,容易出错,是没个块之间,也就是第一个不用空一行,因为格式我提交3.4次错了,所以还是要看清楚题目的意思下手,更重要的是真应该提高英语水平了,这个题很简单没什么难度,主要是格式方面的注意。

#include<iostream>

using namespace std;

int main()

{

int a,b,i,k,n,m,count,t,sum,c;

cin>>k;

for(i=0;i<k;i++)

{

         if(i>0)

   cout<<endl;

   t=1;

while(cin>>n>>m&&(n>0&&n<=100)&&(n!=0||m!=0))

{

   count=0;

for(a=1;a<n-1;a++)

for(b=a+1;b<=n-1;b++)

{

 sum=a*a+b*b+m;

 c=a*b;

if(sum%c==0)

{

count+=1;

}

}

cout<<"Case"<<t<<": "<<count<<endl;

t++;

}

}

return 0;

}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值