动态规划—杭电1159 Common Subsequence

本文介绍了一个经典的计算机科学问题——寻找两个字符串的最长公共子序列,并提供了一种使用动态规划解决该问题的方法。通过示例展示了算法的运行过程及实现代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

http://acm.hdu.edu.cn/showproblem.php?pid=1159


Common Subsequence

Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 9101 Accepted Submission(s): 3681



Problem Description
A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = <x1, x2, ..., xm> another sequence Z = <z1, z2, ..., zk> is a subsequence of X if there exists a strictly increasing sequence <i1, i2, ..., ik> of indices of X such that for all j = 1,2,...,k, xij = zj. For example, Z = <a, b, f, c> is a subsequence of X = <a, b, c, f, b, c> with index sequence <1, 2, 4, 6>. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y.
The program input is from a text file. Each data set in the file contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct. For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line.


Sample Input
abcfbc abfcab
programming contest
abcd mnp



Sample Output
4
2
0



辅助空间变化示意图

 abcbc
a111111
b122222
f122333
c123334
a123334
b123344


#include <iostream>
#include <string.h>
#define max(a,b) a>b?a:b
using namespace std;
char a[1001],b[1001];
int dp[1001][1001];
int main()
{
	while(cin>>a>>b)
	{
		memset(dp,0,sizeof(dp));
		int lena,lenb;
		lena=strlen(a);
		lenb=strlen(b);
		int i,j;
		for(i=0;i<lena;i++)
			for(j=0;j<lenb;j++)
			{
				if(a[i]==b[j])
						dp[i+1][j+1]=dp[i][j]+1;
				else
						dp[i+1][j+1] = max(dp[i+1][j],dp[i][j+1]);
			}
			cout<<dp[lena][lenb]<<endl;				
	}
	return 0;
}




评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值