SparkRDD之aggregate

Spark 文档中对 aggregate的函数定义如下:

def aggregate[U](zeroValue: U)(seqOp: (U, T) => U, combOp: (U, U) 
=> U)(implicit arg0: ClassTag[U]): U

注释:

Aggregate the elements of each partition, and then the results for 
all the partitions, using given combine functions and a neutral 
"zero value". 
This function can return a different result type, U, 
than the type of this RDD, T. 
Thus, we need one operation for merging a T into an U 
and one operation for merging two U's, as in 
Scala.TraversableOnce. Both of these functions are allowed to 
modify and return their first argument instead of creating a new U 
to avoid memory allocation. 

aggregate函数首先对每个分区里面的元素进行聚合,然后用combine函数将每个分区的结果和初始值(zeroValue)进行combine操作。这个操作返回的类型不需要和RDD中元素类型一致,所以在使用 aggregate()时,需要提供我们期待的返回类型的初始值,然后通过一

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值