arXiv: https://arxiv.org/abs/1904.08900
github: https://github.com/princeton-vl/CornerNet-Lit
1. CornerNet
- CornerNet 是基于关键点的目标检测方法,不需要 anchor box,在单阶段检测器取得了SOTA 的精度。在COCO数据集上 AP 为 42.2%,但是单帧图像的 inference 需要1.147s。
2. CornerNet-Lite
- CornerNet-Lite 是 CorNet 的两个有效的变体:CornerNet-Saccade 与 CornerNet-Squeeze
- CornerNet-Saccade 在不牺牲精度的情况下来提高效率,单帧图像处理时间为 190 ms,在 COCO上 AP 为43.2%,比CornerNet 还提高了 1%。
- CornerNet-Squeeze 在达到实时的情况下,尽可能提高精度,单帧图像处理时间为30ms,在COCO上 AP 为 34.4%。(YOLOv3 39ms AP 33%)。
注:作者测试了 CornerNet-Squeeze-Saccade 比 CornerNet-Squeeze 的精度和速度都要差。 - COCO数据集上 YOLOv3、CornerNet、CornerNet-Lite 对比
1.CornerNet-Lite 比 CornerNet 速度提高了 6 倍,AP 提高了 1% 。
2.CornerNet-Lite 在精度和速度上都优于 YOLOv3,是目前 SOTA 的实时检测器。
3.硬件:1080 Ti GPU,Intel Core i7-7700k CPU