1、使用队列实现栈
https://leetcode.com/problems/implement-stack-using-queues/
class MyStack {
private Queue<Integer> queue;
/** Initialize your data structure here. */
public MyStack() {
queue = new LinkedList<Integer>();
}
/** Push element x onto stack. */
public void push(int x) {
Queue<Integer> tempQueue = new LinkedList<Integer>();
tempQueue.offer(x);
while(queue.size() > 0){
tempQueue.offer(queue.poll());
}
queue = tempQueue;
}
/** Removes the element on top of the stack and returns that element. */
public int pop() {
return queue.poll();
}
/** Get the top element. */
public int top() {
return queue.peek();
}
/** Returns whether the stack is empty. */
public boolean empty() {
return queue.isEmpty();
}
}
2、用栈实现队列
2.1、单栈法
https://leetcode.com/problems/implement-queue-using-stacks/
- 除了 push 操作,其他操作就是直接使用栈的操作
- 每次push 平均复杂度都是0(n)
class MyQueue {
private Stack<Integer> stack;
/** Initialize your data structure here. */
public MyQueue() {
stack = new Stack<Integer>();
}
/** Push element x to the back of queue. */
public void push(int x) {
Stack tempStack = new Stack<Integer>();
while(!stack.isEmpty()){
tempStack.push(stack.pop());
}
stack.push(x);
while(!tempStack.isEmpty()){
stack.push((Integer)tempStack.pop());
}
}
/** Removes the element from in front of queue and returns that element. */
public int pop() {
return stack.pop();
}
/** Get the front element. */
public int peek() {
return stack.peek();
}
/** Returns whether the queue is empty. */
public boolean empty() {
return stack.isEmpty();
}
}
2.2 双栈法
- 平均复杂度0(1)
- push 操作直接压栈 ,pop、peek 都需要判断 outputStack 为空的情况
class MyQueue {
private Stack<Integer> inputStack;
private Stack<Integer> outputStack;
/** Initialize your data structure here. */
public MyQueue() {
inputStack = new Stack<Integer>();
outputStack = new Stack<Integer>();
}
/** Push element x to the back of queue. */
public void push(int x) {
inputStack.push(x);
}
/** Removes the element from in front of queue and returns that element. */
public int pop() {
if(outputStack.isEmpty()){
while(!inputStack.isEmpty()){
outputStack.push(inputStack.pop());
}
}
return outputStack.pop();
}
/** Get the front element. */
public int peek() {
if(outputStack.isEmpty()){
while(!inputStack.isEmpty()){
outputStack.push(inputStack.pop());
}
}
return outputStack.peek();
}
/** Returns whether the queue is empty. */
public boolean empty() {
return inputStack.isEmpty() && outputStack.isEmpty();
}
}
2.3 最小值栈
https://leetcode.com/problems/min-stack/
- 用一个栈来存储正常栈的数据
- 用另一个栈来存储 对栈每次操作下最小值的状态
class MinStack {
public static Stack<Integer> stack;
public static Stack<Integer> minStack;
/** initialize your data structure here. */
public MinStack() {
stack = new Stack<Integer>();
minStack = new Stack<Integer>();
}
public void push(int x) {
stack.push(x);
if(minStack.isEmpty()){
minStack.push(x);
}else{
if(minStack.peek() > x){
minStack.push(x);
}else{
minStack.push(minStack.peek());
}
}
}
public void pop() {
stack.pop();
minStack.pop();
}
public int top() {
return stack.peek();
}
public int getMin() {
return minStack.peek();
}
}
/**
* Your MinStack object will be instantiated and called as such:
* MinStack obj = new MinStack();
* obj.push(x);
* obj.pop();
* int param_3 = obj.top();
* int param_4 = obj.getMin();
*/
2.4 数组中第K大的数
https://leetcode.com/problems/kth-largest-element-in-an-array/
- 利用大小为K的小顶堆
- java 中利用优先级队列模拟小顶堆
class Solution {
public int findKthLargest(int[] nums, int k) {
PriorityQueue<Integer> heap =
new PriorityQueue<Integer>((n1, n2) -> n1 - n2);
for(int i = 0;i < nums.length;i ++){
heap.add(nums[i]);
if(heap.size() > k){
heap.poll();
}
}
return heap.poll();
}
}
2.5 寻找中位数
https://leetcode.com/problems/find-median-from-data-stream/
- 利用大顶堆 存储有序数据的前半部分
- 利用小顶堆 存储有序数据的后半部分
- 这样中位数就可以从 两个堆的堆顶得到
class MedianFinder {
PriorityQueue<Double> minHeap ;
PriorityQueue<Double> maxHeap;
/** initialize your data structure here. */
public MedianFinder() {
minHeap = new PriorityQueue<Double>((n1, n2) -> n1.compareTo(n2));
maxHeap = new PriorityQueue<Double>((n1, n2) -> n2.compareTo(n1));
}
public void addNum(int num) {
double dnum = (double)num;
if(maxHeap.isEmpty()){
maxHeap.add(dnum);
return;
}
if(minHeap.size() == maxHeap.size()){
if(dnum < maxHeap.peek()){
maxHeap.add(dnum);
}else {
minHeap.add(dnum);
}
}else if(minHeap.size() > maxHeap.size()){
if(dnum < minHeap.peek()){
maxHeap.add(dnum);
}else{
maxHeap.add(minHeap.peek());
minHeap.poll();
minHeap.add(dnum);
}
}else if(minHeap.size() < maxHeap.size()){
if(dnum <= maxHeap.peek()){
minHeap.add(maxHeap.peek());
maxHeap.poll();
maxHeap.add(dnum);
}else{
minHeap.add(dnum);
}
}
}
public double findMedian() {
if(minHeap.size() == maxHeap.size()){
return (minHeap.peek() + maxHeap.peek())/2.0;
}else if(minHeap.size() < maxHeap.size()){
return maxHeap.peek();
}else{
return minHeap.peek();
}
}
}
/**
* Your MedianFinder object will be instantiated and called as such:
* MedianFinder obj = new MedianFinder();
* obj.addNum(num);
* double param_2 = obj.findMedian();
*/