Given n
balloons, indexed from 0
to n-1
.
Each balloon is painted with a number on it represented by array nums
. You are asked to
burst all the balloons. If the you burst balloon i
you will get nums[left]
* nums[i] * nums[right]
coins. Here left
and right
are
adjacent indices of i
. After the burst, the left
and right
then
becomes adjacent.
Find the maximum coins you can collect by bursting the balloons wisely.
Note:
(1) You may imagine nums[-1] = nums[n] = 1
. They are not real therefore you can not burst
them.
(2) 0 ≤ n
≤ 500, 0 ≤ nums[i]
≤
100
Example:
Given [3, 1, 5, 8]
Return 167
nums = [3,1,5,8] --> [3,5,8] --> [3,8] --> [8] --> [] coins = 3*1*5 + 3*5*8 + 1*3*8 + 1*8*1 = 167
思路:
看了discuss是dp[i][j]为打破的气球为i~j之间。
我们可以想象:最后的剩下一个气球为i的时候,可以获得的分数为:nums[-1]*nums[i]*nums[n].
那么介于i,j之间的x,有: dp[i][j] = max(dp[i][j], dp[i][x – 1] + nums[i – 1] * nums[x] * nums[j + 1] + dp[x + 1][j]);
class Solution {
public:
int maxCoins(vector<int>& nums) {
int n = nums.size();
nums.insert(nums.begin(), 1);
nums.insert(nums.end(), 1);
vector<vector<int>> dp(n+2, vector<int>(n+2, 0));
for(int l = 1; l <= n; l++) //i和j之间的间隔l
{
for(int i = 1; i <= n-l+1; i++)
{
int j = i+l-1;
for(int x = i; x <= j; x++) //遍历ij之间的每一种情况
{
int temp = max(dp[i][j], dp[i][x-1]+dp[x+1][j]+nums[i-1]*nums[x]*nums[j+1]);
if(temp > dp[i][j])
dp[i][j] = temp;
}
}
}
return dp[1][n];
}
};