KD-tree学习笔记

本文介绍了K-D树的学习笔记,包括其在特征点匹配中的应用、K近邻算法的原理以及Kd-Tree的性质和构建过程。K-D树是一种用于多维空间关键数据搜索的数据结构,常用于范围查询和最近邻搜索。KNN算法是基于周围有限邻近样本进行分类的简单机器学习方法。文章还概述了基于Kd-Tree的近似最近邻搜索流程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

来源:在ICP算法中,提到在目标点云中寻找若干特征点,然后利用K-D tree寻找这些特征点在参考点云中的最近点。此步骤目的是减少泛时间代价O(logNx


如上图(a),我们先对待识别的物体的图像进行SIFT特征点的检测和特征点的描述,然后得到了SIFT特征点集合。接下来生成物体目标描述要做的就是对特征点集合进行数据组织,形成一种特殊的表示,其作用是为了加速特征点匹配的过程。所谓的特征点匹配本质上是一个通过距离函数(例如欧式距离)在高维矢量之间进行相似性检索的问题,简单来讲就是范围查询或者K近邻查询的问题。

 

范围查询就是给定查询点和查询距离阈值,从数据集中找出所有与查询点距离小于查询距离阈值的数据;K近邻查询就是给定查询点和正整数K,从数据集中找到距离查询点最近的K个数据,当K=1时,它就是最近邻查询。

 

如上图(b)我们从输入图像中进行SIFT特征点的检测和特征点的描述后,得到了一个待查询点的集合,接下来就是要找出集合中的每一个待查询点在(a)过程得到的目标物体的特征点集合中进行2近邻查询(即得到最近邻和次近邻),得到一组特征点的匹配对<待查询点,待查询点的最近邻>;得到所有匹配对后,然后通过阈值法(与最近邻的距离要小于一个常数)和比值法(与最近邻的距离比次近邻的距离要小于一个常数)进行提纯,滤去较差的匹配对。得到最终的匹配对集合。

 

简介:k-d树(k-dimensional树的简称),是一种分割k维数据空间的数据结构。主要应用于多维空间关键数据的搜索(如:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值