hdu 2608 0 or 1

本文介绍了一个有趣的数学问题,即如何计算S(n)=T(1)+T(2)+...+T(n)对2取模的结果,其中T(n)是所有能整除n的正整数之和。文章提供了一种高效的算法实现,并附上了C++代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Problem Description
Solving problem is a interesting thing. Yifenfei like to slove different problem,because he think it is a way let him more intelligent. But as we know,yifenfei is weak in math. When he come up against a difficult math problem, he always try to get a hand. Now the problem is coming! Let we
define T(n) as the sum of all numbers which are positive integers can divied n. and S(n) = T(1) + T(2) + T(3)…..+T(n).

Input
The first line of the input contains an integer T which means the number of test cases. Then T lines follow, each line consists of only one positive integers n. You may assume the integer will not exceed 2^31.

Output
For each test case, you should output one lines of one integer S(n) %2. So you may see the answer is always 0 or 1 .

Sample Input
  
3 1 2 3

Sample Output
  
1 0 0
Hint
Hint S(3) = T(1) + T(2) +T(3) = 1 + (1+2) + (1+3) = 8 S(3) % 2 = 0

通过打表会发现T(N)的一个特点,N=1,2,4,8,9,16,18,25,32,36,49,50,64....时T(N)%2==1,其余的都是0

结果见下表。
T(N)%2 1 1 0 1 0 0 0 1 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1...

 

S(N) 1 0 0 1 1 1 1 0 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 0...
所以S(N)就是统计从 1-N 之间有若干好多个满足T(i)= 1的数

也可以证明 参考http://blog.youkuaiyun.com/zuihoudebingwen/article/details/7976175

代码如下:

#include<cstdio>   
#include<cmath> 
#include<iostream> 
using namespace std; 
int main() 

    int t,n,m; 
    scanf("%d",&t); 
    while(t--) 
    { 
        scanf("%d",&n); 
        m=(int)sqrt(n)+(int)sqrt(n/2); 
        printf("%d\n",m%2); 
    } 
    return 0; 

注意要用G++交    c++不通过double转换成int

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值