Description
You are given n closed, integer intervals [ai, bi] and n integers c1, ..., cn.
Write a program that:
reads the number of intervals, their end points and integers c1, ..., cn from the standard input,
computes the minimal size of a set Z of integers which has at least ci common elements with interval [ai, bi], for each i=1,2,...,n,
writes the answer to the standard output.
Write a program that:
reads the number of intervals, their end points and integers c1, ..., cn from the standard input,
computes the minimal size of a set Z of integers which has at least ci common elements with interval [ai, bi], for each i=1,2,...,n,
writes the answer to the standard output.
Input
The first line of the input contains an integer n (1 <= n <= 50000) -- the number of intervals. The following n lines describe the intervals. The (i+1)-th line of the input contains three integers ai, bi and ci separated by single spaces and such that 0 <= ai <= bi <= 50000 and 1 <= ci <= bi - ai+1.
Output
The output contains exactly one integer equal to the minimal size of set Z sharing at least ci elements with interval [ai, bi], for each i=1,2,...,n.
Sample Input
5 3 7 3 8 10 3 6 8 1 1 3 1 10 11 1
Sample Output
6
Source
/**
题意:给出n个闭区间[ai,bi],每个区间对应一个ci,
表示集合Z在区间[ai,bi]内ci个相同元素,
问集合Z至少有几个元素。
分析 :差分约束入门。
如果我用Si表示区间[0,i]区间内至少有多少个元素的话,
那么Sbi - Sai >= ci,这样我们就构造出来了一系列边,权值为ci,
但是这远远不够,因为有很多点依然没有相连接起来,
不难写出0<=Si - Si-1<=1的限制条件。
我们将上面的限制条件写为同意的形式:
Sbi - Sai >= ci
Si - Si-1 >= 0
Si-1 - Si >= -1
对于 b - a > c , addedge(a,b,c);
*/
#include <stdio.h>
#include <algorithm>
#include<cstring>
#include <iostream>
#include<queue>
using namespace std;
const int N = 50010;
const int INF = 1<<30;
int mn = INF,mx = -1;
int d[N],first[N],v[N<<2],w[N<<2],next[N<<2];
char inq[N];
int p = 0;
void Bellman_Ford()
{
for(int i=mn; i<=mx; i++)d[i]=-INF;
d[mn] = 0;
queue<int>q;
q.push(mn);
while(!q.empty())
{
int u = q.front();
q.pop();
inq[u]=0;
for(int i=first[u]; i!=-1; i=next[i])
{
if(d[v[i]] < d[u]+w[i])
{
d[v[i]] = d[u]+w[i];
if(!inq[v[i]])
{
inq[v[i]]=1;
q.push(v[i]);
}
}
}
}
}
void addedge(int a, int b, int k)
{
v[++p] = b;
next[p] = first[a];
first[a] = p;
w[p] = k;
}
int main()
{
//freopen("date.in","r",stdin);
int i,j,k,m,n,a,b;
memset(first,-1,sizeof(first));
scanf("%d",&n);
for(i=1; i<=n; i++)
{
scanf("%d %d %d",&a,&b,&k);
b++;
mn = min(mn,a), mx = max(mx,b);
addedge(a,b,k);
}
for(i=mn; i<mx; i++)
addedge(i,i+1,0), addedge(i+1,i,-1);
Bellman_Ford();
printf("%d\n",d[mx]);
}