题目地址:POJ 2186
先用强连通分量缩点,然后形成一棵树。我第一次用的判定条件是入度为分量数-1。虽然这种情况下确实正确。但是在树中也是有间接关系的。这个条件并不是充分必要条件。正确的做法是逆序建树,然后找根结点。而且根结点有且只有一个才可以。所以转化成了找出度为0的分量。
代码如下:
#include <iostream>
#include <string.h>
#include <math.h>
#include <queue>
#include <algorithm>
#include <stdlib.h>
#include <map>
#include <set>
#include <stdio.h>
using namespace std;
#define LL long long
#define pi acos(-1.0)
const int mod=1e9+7;
const int INF=0x3f3f3f3f;
const double eqs=1e-9;
const int MAXN=10000+10;
int head[MAXN], Ecnt, top, indx, scc;
int low[MAXN], dfn[MAXN], belong[MAXN], instack[MAXN], stk[MAXN], out[MAXN];
struct node
{
int u, v, next;
}edge[1000000];
void add(int u, int v)
{
edge[Ecnt].v=v;
edge[Ecnt].next=head[u];
head[u]=Ecnt++;
}
void tarjan(int u)
{
low[u]=dfn[u]=++indx;
instack[u]=1;
stk[++top]=u;
for(int i=head[u];i!=-1;i=edge[i].next){
int v=edge[i].v;
if(!dfn[v]){
tarjan(v);
low[u]=min(low[u],low[v]);
}
else if(instack[v]){
low[u]=min(low[u],dfn[v]);
}
}
if(low[u]==dfn[u]){
scc++;
while(1){
int v=stk[top--];
belong[v]=scc;
instack[v]=0;
if(u==v) break;
}
}
}
void init()
{
memset(head,-1,sizeof(head));
memset(dfn,0,sizeof(dfn));
memset(instack,0,sizeof(instack));
memset(out,0,sizeof(out));
Ecnt=top=indx=scc=0;
}
int main()
{
int n, m, i, j, u, v, ans, cnt;
while(scanf("%d",&n)!=EOF&&n){
scanf("%d",&m);
init();
while(m--){
scanf("%d%d",&u,&v);
add(u,v);
}
for(i=1;i<=n;i++){
if(!dfn[i]) tarjan(i);
}
for(i=1;i<=n;i++){
for(j=head[i];j!=-1;j=edge[j].next){
v=edge[j].v;
if(belong[i]!=belong[v]){
out[belong[i]]++;
}
}
}
ans=0;
cnt=0;
for(i=1;i<=scc;i++){
if(!out[i]) cnt++;
}
if(cnt>1) printf("0\n");
else{
for(i=1;i<=n;i++){
if(out[belong[i]]==0)
ans++;
}
printf("%d\n",ans);
}
}
return 0;
}