Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.
Note: You can only move either down or right at any point in time.
Example:
Input:
[
[1,3,1],
[1,5,1],
[4,2,1]
]
Output: 7
Explanation: Because the path 1→3→1→1→1 minimizes the sum.
题解:入门题注意边界
class Solution {
public:
int minPathSum(vector<vector<int>>& grid) {
int n = grid.size();
int m = grid[0].size();
int dp[500][500];
memset(dp, 0x3f, sizeof(dp));
dp[0][0] = grid[0][0];
for(int i = 1;i < n; i++){
dp[i][0] = min(dp[i][0], dp[i-1][0] + grid[i][0]);
}
for(int i = 1;i < m; i++){
dp[0][i] = min(dp[0][i], dp[0][i-1] + grid[0][i]);
}
for(int i = 1;i < n; i++){
for(int j = 1;j < m; j++){
dp[i][j] = min(dp[i-1][j]+grid[i][j], dp[i][j]);
dp[i][j] = min(dp[i][j-1]+grid[i][j], dp[i][j]);
}
}
return dp[n-1][m-1];
}
};