stm32的串口空闲中断接收数据

本文详细介绍了如何使用DMA(Direct Memory Access)技术优化串口通信效率,通过中断服务函数实现数据的快速传输与接收。重点阐述了初始化设置、DMA配置、中断优先级配置等关键步骤,确保在不同波特率的通信场景下实现稳定的数据交换。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

举个例子:

1、后台数据->USART1-> USART2->其它设备,其它设备数据->USART2-> USART1->后台,这两个数据过程也可能同时进行。

2、由于硬件的限制,USART1和USART2的传输波特率不一样,比如USART1使用GPRS通信,USART2使用短距离无线通信;或者USART1使用以太网通信,USART2使用485总线通信。


现在我把我实现的过程简单描述一下:

1、 初始化设置:USART1_RX DMA1_ Channel5,USART2_RX DMA1_ Channel6,USART1_TX DMA1_ Channel4,USART2_TX DMA1_ Channel7(具体设置请看程序包)
2、 当数据发送给USART1接收完毕时候会引起USART1的串口总线中断,计算DMA1_ Channel5内存数组剩余容量,得到接收的字符长度。将接收的字符复制给DMA1_ Channel4内存数组,启动DMA1_ Channel4通道传输数据,(传输完成需要关闭。)下一次数据接收可以在启动DMA1_ Channel4时候就开始,不需要等待DMA1_ Channel4数据传输完成。但是上一次DMA1_ Channel4完成之前,不可以将数据复制给DMA1_ Channel4内存数组,会冲掉以前数据。

3、 USART2类同USART1。


源程序:

IO口定义:
void GPIO_Configuration(void)
{
GPIO_InitTypeDef GPIO_InitStructure;
/* 第1步:打开GPIO和USART部件的时钟 */
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA | RCC_APB2Periph_AFIO, ENABLE);
RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1, ENABLE);
/* 第2步:将USART Tx的GPIO配置为推挽复用模式 */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init(GPIOA, &GPIO_InitStructure);
/* 第3步:将USART Rx的GPIO配置为浮空输入模式
由于CPU复位后,GPIO缺省都是浮空输入模式,因此下面这个步骤不是必须的
但是,我还是建议加上便于阅读,并且防止其它地方修改了这个口线的设置参数
*/

GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;
GPIO_Init(GPIOA, &GPIO_InitStructure);
/* 第1步:打开GPIO和USART2部件的时钟 */
//RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA | RCC_APB2Periph_AFIO, ENABLE);
RCC_APB1PeriphClockCmd(RCC_APB1Periph_USART2, ENABLE);
/* 第2步:将USART2 Tx的GPIO配置为推挽复用模式 */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_2;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init(GPIOA, &GPIO_InitStructure);
/* 第3步:将USART2 Rx的GPIO配置为浮空输入模式
由于CPU复位后,GPIO缺省都是浮空输入模式,因此下面这个步骤不是必须的
但是,我还是建议加上便于阅读,并且防止其它地方修改了这个口线的设置参数
*/

GPIO_InitStructure.GPIO_Pin = GPIO_Pin_3;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;
GPIO_Init(GPIOA, &GPIO_InitStructure);
/* 第3步已经做了,因此这步可以不做
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
*/
GPIO_Init(GPIOA, &GPIO_InitStructure);

}


串口初始化:
void USART_Configuration(void)
{
USART_InitTypeDef USART_InitStructure;
/* 第4步:配置USART参数
- BaudRate = 115200 baud
- Word Length = 8 Bits
- One Stop Bit
- No parity
- Hardware flow control disabled (RTS and CTS signals)
- Receive and transmit enabled
*/

USART_InitStructure.USART_BaudRate = 19200;
USART_InitStructure.USART_WordLength = USART_WordLength_8b;
USART_InitStructure.USART_StopBits = USART_StopBits_1;
USART_InitStructure.USART_Parity = USART_Parity_No;
USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;
USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx;

USART_Init(USART1, &USART_InitStructure);

//配置USART1空闲中断

USART_ITConfig(USART1, USART_IT_IDLE , ENABLE);

/* 第5步:使能 USART, 配置完毕 */
USART_Cmd(USART1, ENABLE); 
/* CPU的小缺陷:串口配置好,如果直接Send,则第1个字节发送不出去
如下语句解决第1个字节无法正确发送出去的问题 */

USART_ClearFlag(USART1, USART_FLAG_TC); /* 清发送完成标志,Transmission Complete flag */
USART_InitStructure.USART_BaudRate = 9600;
USART_InitStructure.USART_WordLength = USART_WordLength_8b;
USART_InitStructure.USART_StopBits = USART_StopBits_1;
USART_InitStructure.USART_Parity = USART_Parity_No;
USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;
USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx;

USART_Init(USART2, &USART_InitStructure);

//配置USART2空闲中断

USART_ITConfig(USART2, USART_IT_IDLE , ENABLE);
USART_Cmd(USART2, ENABLE);
/* CPU的小缺陷:串口配置好,如果直接Send,则第1个字节发送不出去
如下语句解决第1个字节无法正确发送出去的问题 */

USART_ClearFlag(USART2, USART_FLAG_TC); /* 清发送外城标志,Transmission Complete flag */

}


DMA配置:
void DMA_Configuration(void)
{
DMA_InitTypeDef DMA_InitStructure;
/* DMA clock enable */
RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA1, ENABLE); //开启DMA1外设时钟
/* DMA1 Channel4 (triggered by USART1 Tx event) Config */
DMA_DeInit(DMA1_Channel4); 
DMA_InitStructure.DMA_PeripheralBaseAddr = 0x40013804;
DMA_InitStructure.DMA_MemoryBaseAddr = (uint32_t)USART1_SEND_DATA;
DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralDST;
DMA_InitStructure.DMA_BufferSize = 512;
DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable;
DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable;
DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_Byte;
DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_Byte;
DMA_InitStructure.DMA_Mode = DMA_Mode_Circular; //循环模式
DMA_InitStructure.DMA_Priority = DMA_Priority_High;
DMA_InitStructure.DMA_M2M = DMA_M2M_Disable;
DMA_Init(DMA1_Channel4, &DMA_InitStructure);
DMA_ITConfig(DMA1_Channel4, DMA_IT_TC, ENABLE);
DMA_ITConfig(DMA1_Channel4, DMA_IT_TE, ENABLE);
/* Enable USART1 DMA TX request */
USART_DMACmd(USART1, USART_DMAReq_Tx, ENABLE);
DMA_Cmd(DMA1_Channel4, DISABLE);
/* DMA1 Channel5 (triggered by USART2 Tx event) Config */
DMA_DeInit(DMA1_Channel7); 
DMA_InitStructure.DMA_PeripheralBaseAddr = 0x40004404;
DMA_InitStructure.DMA_MemoryBaseAddr = (uint32_t)USART2_SEND_DATA;
DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralDST;
DMA_InitStructure.DMA_BufferSize = 512;
DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable;
DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable;
DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_Byte;
DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_Byte;
DMA_InitStructure.DMA_Mode = DMA_Mode_Circular;
DMA_InitStructure.DMA_Priority = DMA_Priority_High;
DMA_InitStructure.DMA_M2M = DMA_M2M_Disable;
DMA_Init(DMA1_Channel7, &DMA_InitStructure);
DMA_ITConfig(DMA1_Channel7, DMA_IT_TC, ENABLE);
DMA_ITConfig(DMA1_Channel7, DMA_IT_TE, ENABLE);
/* Enable USART1 DMA TX request */
USART_DMACmd(USART2, USART_DMAReq_Tx, ENABLE);
DMA_Cmd(DMA1_Channel7, DISABLE);
/* DMA1 Channel5 (triggered by USART1 Rx event) Config */
DMA_DeInit(DMA1_Channel5); 
DMA_InitStructure.DMA_PeripheralBaseAddr = 0x40013804;
DMA_InitStructure.DMA_MemoryBaseAddr = (uint32_t)USART1_RECEIVE_DATA;
DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralSRC;
DMA_InitStructure.DMA_BufferSize = 512;
DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable;
DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable;
DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_Byte;
DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_Byte;
DMA_InitStructure.DMA_Mode = DMA_Mode_Circular;
DMA_InitStructure.DMA_Priority = DMA_Priority_High;
DMA_InitStructure.DMA_M2M = DMA_M2M_Disable;
DMA_Init(DMA1_Channel5, &DMA_InitStructure);
DMA_ITConfig(DMA1_Channel5, DMA_IT_TC, ENABLE);
DMA_ITConfig(DMA1_Channel5, DMA_IT_TE, ENABLE);
/* Enable USART1 DMA RX request */
USART_DMACmd(USART1, USART_DMAReq_Rx, ENABLE);
DMA_Cmd(DMA1_Channel5, ENABLE);
/* DMA1 Channel6 (triggered by USART1 Rx event) Config */
DMA_DeInit(DMA1_Channel6); 
DMA_InitStructure.DMA_PeripheralBaseAddr = 0x40004404;
DMA_InitStructure.DMA_MemoryBaseAddr = (uint32_t)USART2_RECEIVE_DATA;
DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralSRC;
DMA_InitStructure.DMA_BufferSize = 512;
DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable;
DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable;
DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_Byte;
DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_Byte;
DMA_InitStructure.DMA_Mode = DMA_Mode_Circular;
DMA_InitStructure.DMA_Priority = DMA_Priority_Medium;
DMA_InitStructure.DMA_M2M = DMA_M2M_Disable;
DMA_Init(DMA1_Channel6, &DMA_InitStructure);
DMA_ITConfig(DMA1_Channel6, DMA_IT_TC, ENABLE);
DMA_ITConfig(DMA1_Channel6, DMA_IT_TE, ENABLE);
/* Enable USART2 DMA RX request */
USART_DMACmd(USART2, USART_DMAReq_Rx, ENABLE);
DMA_Cmd(DMA1_Channel6, ENABLE);

}


中断优先级配置:
void NVIC_Configuration(void)
{
NVIC_InitTypeDef NVIC_InitStructure;
/* Configure one bit for preemption priority */
NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2); 
/* Enable the USART1 Interrupt */
NVIC_InitStructure.NVIC_IRQChannel = USART1_IRQn;
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 2;
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 1;
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(&NVIC_InitStructure);
/* Enable the USART2 Interrupt */
NVIC_InitStructure.NVIC_IRQChannel = USART2_IRQn;
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 2;
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 2;
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(&NVIC_InitStructure);
//Enable DMA Channel4 Interrupt 
NVIC_InitStructure.NVIC_IRQChannel = DMA1_Channel4_IRQn;
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 1;
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 1;
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(&NVIC_InitStructure);
//Enable DMA Channel7 Interrupt 
NVIC_InitStructure.NVIC_IRQChannel = DMA1_Channel7_IRQn;
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 1;
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 2;
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(&NVIC_InitStructure);
/*Enable DMA Channel5 Interrupt */
NVIC_InitStructure.NVIC_IRQChannel = DMA1_Channel5_IRQn;
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 2;
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0;
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(&NVIC_InitStructure);
/*Enable DMA Channel6 Interrupt */
NVIC_InitStructure.NVIC_IRQChannel = DMA1_Channel6_IRQn;
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 2;
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 1;
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(&NVIC_InitStructure);

}


数组定义,含义如题名:
u8 USART1_SEND_DATA[512]; 
u8 USART2_SEND_DATA[512]; 
u8 USART1_RECEIVE_DATA[512]; 
u8 USART2_RECEIVE_DATA[512]; 
u8 USART1_TX_Finish=1; // USART1发送完成标志量

u8 USART2_TX_Finish=1; // USART2发送完成标志量


USART1中断服务函数
void USART1_IRQHandler(void)
{
u16 DATA_LEN;
u16 i;
if(USART_GetITStatus(USART1, USART_IT_IDLE) != RESET) //如果为空闲总线中断
{
DMA_Cmd(DMA1_Channel5, DISABLE); //关闭DMA,防止处理其间有数据
//USART_RX_STA = USART1->SR; //先读SR,然后读DR才能清除
//USART_RX_STA = USART1->DR;
DATA_LEN=512-DMA_GetCurrDataCounter(DMA1_Channel5); 
if(DATA_LEN > 0)

while(USART1_TX_Finish==0) //等待数据传输完成才下一次
{
;

}

//将数据送DMA存储地址
for(i=0;i<DATA_LEN;i )
{
USART1_SEND_DATA=USART1_RECEIVE_DATA;
}
//USART用DMA传输替代查询方式发送,克服被高优先级中断而产生丢帧现象。
DMA_Cmd(DMA1_Channel4, DISABLE); //改变datasize前先要禁止通道工作
DMA1_Channel4->CNDTR=DATA_LEN; //DMA1,传输数据量
USART1_TX_Finish=0; //DMA传输开始标志量
DMA_Cmd(DMA1_Channel4, ENABLE); 
}
//DMA_Cmd(DMA1_Channel5, DISABLE); //关闭DMA,防止处理其间有数据
DMA_ClearFlag(DMA1_FLAG_GL5 | DMA1_FLAG_TC5 | DMA1_FLAG_TE5 | DMA1_FLAG_HT5); //清标志
DMA1_Channel5->CNDTR = 512; //重装填
DMA_Cmd(DMA1_Channel5, ENABLE); //处理完,重开DMA
//读SR后读DR清除Idle
i = USART1->SR;
i = USART1->DR;
}
if(USART_GetITStatus(USART1, USART_IT_PE | USART_IT_FE | USART_IT_NE) != RESET) //出错
{
USART_ClearITPendingBit(USART1, USART_IT_PE | USART_IT_FE | USART_IT_NE);
}
USART_ClearITPendingBit(USART1, USART_IT_TC);
USART_ClearITPendingBit(USART1, USART_IT_IDLE);

}


USART2中断服务函数
void USART2_IRQHandler(void)
{
u16 DATA_LEN;
u16 i;
if(USART_GetITStatus(USART2, USART_IT_IDLE) != RESET) //如果为空闲总线中断
{
DMA_Cmd(DMA1_Channel6, DISABLE); //关闭DMA,防止处理其间有数据
//USART_RX_STA = USART1->SR; //先读SR,然后读DR才能清除
//USART_RX_STA = USART1->DR;
DATA_LEN=512-DMA_GetCurrDataCounter(DMA1_Channel6); 
if(DATA_LEN > 0)
{  
while(USART2_TX_Finish==0) //等待数据完成才下一次
{
;
}
//将数据送DMA存储地址
for(i=0;i<DATA_LEN;i )
{
USART2_SEND_DATA=USART2_RECEIVE_DATA;
}
//USART用DMA传输替代查询方式发送,克服被高优先级中断而产生丢帧现象。
DMA_Cmd(DMA1_Channel7, DISABLE); //改变datasize前先要禁止通道工作
DMA1_Channel7->CNDTR=DATA_LEN;         //DMA1,传输数据量
USART2_TX_Finish=0; //DMA传输开始标志量
DMA_Cmd(DMA1_Channel7, ENABLE); 
}
//DMA_Cmd(DMA1_Channel5, DISABLE); //关闭DMA,防止处理其间有数据
DMA_ClearFlag(DMA1_FLAG_GL6 | DMA1_FLAG_TC6 | DMA1_FLAG_TE6 | DMA1_FLAG_HT6); //清标志
DMA1_Channel6->CNDTR = 512; //重装填
DMA_Cmd(DMA1_Channel6, ENABLE); //处理完,重开DMA
//读SR后读DR清除Idle
i = USART2->SR;
i = USART2->DR;
}
if(USART_GetITStatus(USART2, USART_IT_PE | USART_IT_FE | USART_IT_NE) != RESET) //出错
{
USART_ClearITPendingBit(USART2, USART_IT_PE | USART_IT_FE | USART_IT_NE);
}
USART_ClearITPendingBit(USART2, USART_IT_TC);
USART_ClearITPendingBit(USART2, USART_IT_IDLE);

}


DMA1_Channel5中断服务函数
void DMA1_Channel5_IRQHandler(void)
{
DMA_ClearITPendingBit(DMA1_IT_TC5);
DMA_ClearITPendingBit(DMA1_IT_TE5);
DMA_Cmd(DMA1_Channel5, DISABLE); //关闭DMA,防止处理其间有数据
DMA1_Channel5->CNDTR = 580; //重装填
DMA_Cmd(DMA1_Channel5, ENABLE); //处理完,重开DMA

}


DMA1_Channel6中断服务函数
void DMA1_Channel6_IRQHandler(void)
{
DMA_ClearITPendingBit(DMA1_IT_TC6);
DMA_ClearITPendingBit(DMA1_IT_TE6);
DMA_Cmd(DMA1_Channel6, DISABLE); //关闭DMA,防止处理其间有数据
DMA1_Channel6->CNDTR = 580; //重装填
DMA_Cmd(DMA1_Channel6, ENABLE); //处理完,重开DMA

}


DMA1_Channel4中断服务函数
//USART1使用DMA发数据中断服务程序
void DMA1_Channel4_IRQHandler(void)
{
DMA_ClearITPendingBit(DMA1_IT_TC4);
DMA_ClearITPendingBit(DMA1_IT_TE4);
DMA_Cmd(DMA1_Channel4, DISABLE); //关闭DMA
USART1_TX_Finish=1; //置DMA传输完成

}


DMA1_Channel7中断服务函数
//USART2使用DMA发数据中断服务程序
void DMA1_Channel7_IRQHandler(void)
{
DMA_ClearITPendingBit(DMA1_IT_TC7);
DMA_ClearITPendingBit(DMA1_IT_TE7);
DMA_Cmd(DMA1_Channel7, DISABLE);//关闭DMA
USART2_TX_Finish=1;//置DMA传输完成

}

### STM32 UART Idle Interrupt Data Reception Example and Configuration In applications where the length of incoming data packets is not fixed, using an idle line detection interrupt can be beneficial to handle such scenarios efficiently on STM32 microcontrollers. The following sections provide a detailed explanation along with code examples. #### Configuring UART for Idle Line Detection To enable receiving data via the idle line state detection feature: - Initialize the UART peripheral. - Enable the IDLE interrupt within the UART configuration structure by setting `InterruptPriority` appropriately so that it does not conflict with other peripherals like DMA[^2]. ```c static void MX_USART2_UART_Init(void) { huart2.Instance = USART2; huart2.Init.BaudRate = 115200; huart2.Init.WordLength = UART_WORDLENGTH_8B; huart2.Init.StopBits = UART_STOPBITS_1; huart2.Init.Parity = UART_PARITY_NONE; huart2.Init.Mode = UART_MODE_TX_RX; huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE; huart2.Init.OverSampling = UART_OVERSAMPLING_16; huart2.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE; huart2.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT; if (HAL_UART_Init(&huart2) != HAL_OK) { Error_Handler(); } /* Ensure that UART interrupts are enabled */ __HAL_UART_ENABLE_IT(&huart2, UART_IT_IDLE); } ``` Ensure that the serial communication interface's settings match those expected by external devices communicating over this link. #### Setting Up DMA for Receiving Data For efficient handling of received bytes without CPU intervention until a complete packet arrives or timeout occurs due to idleness between characters: - Configure DMA channel parameters including source/destination addresses and buffer size according to application needs. - Clear any pending flags before starting transfers. - Enable relevant events as required but disable half-transfer notifications when continuous blocks need processing together instead of being split into smaller chunks during transfer completion[^1]. ```c void HAL_UART_MspInit(UART_HandleTypeDef* uartHandle) { GPIO_InitTypeDef GPIO_InitStruct = {0}; if(uartHandle->Instance==USART2) { /* Peripheral clock enable */ __HAL_RCC_USART2_CLK_ENABLE(); /**USART2 GPIO Configuration PA2 ------> USART2_TX PA3 ------> USART2_RX */ GPIO_InitStruct.Pin = GPIO_PIN_2|GPIO_PIN_3; GPIO_InitStruct.Mode = GPIO_MODE_AF_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH; GPIO_InitStruct.Alternate = GPIO_AF7_USART2; HAL_GPIO_Init(GPIOA, &GPIO_InitStruct); hdma_usart2_rx.Instance = DMA1_Channel6; hdma_usart2_rx.Init.Direction = DMA_PERIPH_TO_MEMORY; hdma_usart2_rx.Init.PeriphInc = DMA_PINC_DISABLE; hdma_usart2_rx.Init.MemInc = DMA_MINC_ENABLE; hdma_usart2_rx.Init.PeriphDataAlignment = DMA_PDATAALIGN_BYTE; hdma_usart2_rx.Init.MemDataAlignment = DMA_MDATAALIGN_BYTE; hdma_usart2_rx.Init.Mode = DMA_CIRCULAR; hdma_usart2_rx.Init.Priority = DMA_PRIORITY_LOW; if (HAL_DMA_Init(&hdma_usart2_rx) != HAL_OK) { Error_Handler(); } __HAL_LINKDMA(uartHandle,hdmarx,hdma_usart2_rx); /* USART2 interrupt Init */ HAL_NVIC_SetPriority(USART2_IRQn, 5, 0); // Lower than DMA priority HAL_NVIC_EnableIRQ(USART2_IRQn); } } // Before initiating reception... __HAL_DMA_CLEAR_FLAG(&hdma_usart2_rx, DMA_FLAG_TCIF6 | DMA_FLAG_HTIF6 | DMA_FLAG_TEIF6); __HAL_DMA_DISABLE_IT(&hdma_usart2_rx, DMA_IT_HT); // Disable Half Transfer ITs if(HAL_OK != HAL_UART_Receive_DMA(&huart2, RxBuffer, RXBUFFERSIZE)) { Error_Handler(); } ``` This setup ensures seamless operation even under varying load conditions while maintaining low power consumption through minimal processor involvement in routine tasks related to character-by-character I/O operations. #### Handling Received Packets Using ISR Finally, implement the interrupt service routine responsible for collecting completed messages once detected based upon periods of silence exceeding specified thresholds defined internally within hardware registers associated with each instance of Universal Synchronous Asynchronous Receiver Transmitter present inside these chips. ```c void USART2_IRQHandler(void) { uint16_t temp; HAL_UART_IRQHandler(&huart2); if (__HAL_UART_GET_FLAG(&huart2, UART_FLAG_IDLE) && __HAL_UART_GET_IT_SOURCE(&huart2, UART_IT_IDLE)) { // Stop ongoing DMA activity after detecting end-of-message condition signaled by prolonged absence of further input symbols arriving at receiver pin(s). HAL_UART_DMAStop(&huart2); // Read one byte from RDR register which also clears the IDLE flag automatically post-read action. temp = READ_REG(huart2.Instance->RDR); // Process your message here... // Restart listening process immediately afterwards readying system back up again awaiting next transmission event occurrence anytime soon thereafter. if(HAL_OK != HAL_UART_Receive_DMA(&huart2, RxBuffer, RXBUFFERSIZE)){ Error_Handler(); } } } ``` --related questions-- 1. How do you configure UART baud rates correctly? 2. What considerations should be taken when choosing DMA channels for different peripherals? 3. Can multiple UART instances share the same DMA resource safely? If yes, how would synchronization look like? 4. In what situations might disabling half-transfer interrupts improve performance? 5. Are there alternative methods besides using idle interrupts for managing variable-length data frames effectively?
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Jesse_嘉伟

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值