大数据技术之_12_Sqoop学习
-
- 第1章 Sqoop 简介
- 第2章 Sqoop 原理
- 第3章 Sqoop 安装
- 第4章 Sqoop 的简单使用案例
- 第5章 Sqoop 一些常用命令及参数
-
- 5.1 常用命令列举
- 5.2 命令&参数详解
-
- 5.2.1 公用参数:数据库连接
- 5.2.2 公用参数:import
- 5.2.3 公用参数:export
- 5.2.4 公用参数:hive
- 5.2.5 命令&参数:import
- 5.2.6 命令&参数:export
- 5.2.7 命令&参数:codegen
- 5.2.8 命令&参数:create-hive-table
- 5.2.9 命令&参数:eval
- 5.2.10 命令&参数:import-all-tables
- 5.2.11 命令&参数:job
- 5.2.12 命令&参数:list-databases
- 5.2.13 命令&参数:list-tables
- 5.2.14 命令&参数:merge
- 5.2.15 命令&参数:metastore
第1章 Sqoop 简介
Sqoop 是一款开源的工具,主要用于
在 Hadoop(Hive) 与传统的数据库 (mysql,postgresql,...) 间进行数据的高校传递
,可以将一个关系型数据库(例如:MySQL,Oracle,Postgres等)中的数据导入到 Hadoop 的 HDFS 中,也可以将 HDFS 的数据导进到关系型数据库中。
Sqoop 项目开始于 2009 年,最早是作为 Hadoop 的一个第三方模块存在,后来为了让使用者能够快速部署,也为了让开发人员能够更快速的迭代开发,Sqoop 独立成为一个 Apache 顶级项目。
Sqoop2 的最新版本是 1.99.7。请注意,2 与 1 不兼容,且特征不完整,它并不打算用于生产部署。
第2章 Sqoop 原理
将导入或导出命令翻译成 mapreduce 程序来实现。
在翻译出的 mapreduce 中主要是对 inputformat 和 outputformat 进行定制。
第3章 Sqoop 安装
安装 Sqoop 的前提是已经具备 Java 和 Hadoop 的环境。
3.1 下载并解压
- 下载地址:http://mirrors.hust.edu.cn/apache/sqoop/1.4.6/
- 上传安装包 sqoop-1.4.6.bin__hadoop-2.0.4-alpha.tar.gz 到虚拟机中
- 解压 sqoop 安装包到指定目录,如:
$ tar -zxf sqoop-1.4.6.bin__hadoop-2.0.4-alpha.tar.gz -C /opt/module/
- 重命名 sqoop 安装目录,如:
[atguigu@hadoop102 module]$ mv sqoop-1.4.6.bin__hadoop-2.0.4-alpha/ sqoop
3.2 修改配置文件
Sqoop 的配置文件与大多数大数据框架类似,在 sqoop 根目录下的 conf 目录中。
- 重命名配置文件
$ mv sqoop-env-template.sh sqoop-env.sh
- 修改配置文件
[atguigu@hadoop102 conf]$ pwd
/opt/module/sqoop/conf
[atguigu@hadoop102 conf]$ vim sqoop-env.sh
export HADOOP_COMMON_HOME=/opt/module/hadoop-2.7.2
export HADOOP_MAPRED_HOME=/opt/module/hadoop-2.7.2
export HIVE_HOME=/opt/module/hive
export ZOOKEEPER_HOME=/opt/module/zookeeper-3.4.10
export ZOOCFGDIR=/opt/module/zookeeper-3.4.10
export HBASE_HOME=/opt/module/hbase
3.3 拷贝 JDBC 驱动
拷贝 jdbc 驱动到 sqoop 的 lib 目录下,如:
[atguigu@hadoop102 sqoop]$ cp /opt/software/mysql-libs/mysql-connector-java-5.1.27/mysql-connector-java-5.1.27-bin.jar /opt/module/sqoop/lib/
3.4 验证 Sqoop
我们可以通过某一个 command 来验证 sqoop 配置是否正确:
[atguigu@hadoop102 sqoop]$ bin/sqoop help
出现一些 Warning 警告(警告信息已省略),并伴随着帮助命令的输出:
Available commands:
codegen Generate code to interact with database records
create-hive-table Import a table definition into Hive
eval Evaluate a SQL statement and display the results
export Export an HDFS directory to a database table
help List available commands
import Import a table from a database to HDFS
import-all-tables Import tables from a database to HDFS
import-mainframe Import datasets from a mainframe server to HDFS
job Work with saved jobs
list-databases List available databases on a server
list-tables List available tables in a database
merge Merge results of incremental imports
metastore Run a standalone Sqoop metastore
version Display version information
3.5 测试 Sqoop 是否能够成功连接数据库
[atguigu@hadoop102 sqoop]$ bin/sqoop list-databases --connect jdbc:mysql://hadoop102:3306/ --username root --password 123456
出现如下输出:
information_schema
metastore
mysql
performance_schema
test
第4章 Sqoop 的简单使用案例
4.1 导入数据
在 Sqoop 中,“导入”概念指:从非大数据集群(RDBMS)向大数据集群(HDFS,HIVE,HBASE)中传输数据,叫做:导入,即使用 import 关键字。
4.1.1 从 RDBMS 到 HDFS
- 确定 Mysql 服务开启正常
查询监控端口或者查询进程来确定,以下两种办法可以确认mysql是否在启动运行状态:
办法一:查询端口
$ netstat -tulpn
MySQL监控的是TCP的3306端口,如下图,说明MySQL服务在运行中。
办法二:查询进程
ps -ef | grep mysqld
可以看见mysql的进程
- 在 Mysql 中新建一张表并插入一些数据
$ mysql -uroot -p123456
mysql> create database company;
mysql> create table company.staff(id int(4) primary key not null auto_increment, name varchar(255), sex varchar(255));
mysql> insert into company.staff(name, sex) values('Thomas', 'Male');
mysql> insert into company.staff(name, sex) values('Catalina', 'FeMale');
- 导入数据
(1)全部导入
[atguigu@hadoop102 sqoop]$ bin/sqoop import \
--connect jdbc:mysql://hadoop102:3306/company \
--username root \
--password 123456 \
--table staff \
--target-dir /user/company \
--delete-target-dir \
--num-mappers 1 \
--fields-terminated-by "\t"
(2)查询导入
[atguigu@hadoop102 sqoop]$ bin/sqoop import \
--connect jdbc:mysql://hadoop102:3306/company \
--username root \
--password 123456 \
--target-dir /user/company \
--delete-target-dir \
--num-mappers 1 \
--fields-terminated-by "\t" \
--query 'select name,sex from staff where id <=1 and $CONDITIONS;'
等价于
[atguigu@hadoop102 sqoop]$ bin/sqoop import \
--connect jdbc:mysql://hadoop102:3306/company \
--username root \
--password 123456 \
--target-dir /user/company \
--delete-target-dir \
--num-mappers 1 \
--fields-terminated-by "\t" \
--query "select name,sex from staff where id <=1 and \$CONDITIONS;"
提示
:must contain ' C O N D I T I O N S ′ i n W H E R E c l a u s e . ‘ CONDITIONS' in WHERE clause. ` CONDITIONS′