【2】Model Compression As Constrained Optimization, with Application to Neural Nets. 2017

本文提出了一种将模型压缩视为约束优化的通用框架。相关工作分为直接学习、直接压缩、模型压缩为约束优化和教师-学生四种方法。重点介绍了将压缩作为防止过拟合手段以及在神经网络模型选择中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

文章地址: https://arxiv.org/pdf/1707.01209.pdf

Part I: general framework.

We give a general formulation of model compression as constrained optimization.

Related work.

Four categories of model compression.

  1. Direct learning: min ⁡ Θ L ( h ( x ; Θ ) ) \min_\Theta L(h(x; \Theta)) minΘL(h(x;Θ)): find the small model with the best loss regardless of the reference.
  2. Direct compression (DC): min ⁡ Θ ∥ w − ∆ ( Θ ) ∥ 2 \min_\Theta ∥w − ∆(\Theta)∥^2 minΘw(Θ)2: find the closest approximation to the parameters of the reference model.
  3. Model compression as constrained optimization: It forces h h h and f f f to be models of the same type, by constraining the weights w w w to be constructed from a low-dimensional parameterization w = ∆ ( Θ ) w = ∆(Θ) w=(Θ), but h h h must optimize the loss L L L.
  4. Teacher-student : min ⁡ Θ ∫ X p ( x ) ∥ f ( x ; w ) − h ( x ; Θ ) ∥ 2 d x \min_\Theta \int_X p(x) ∥f (x; w) − h(x; \Theta)∥^2dx minΘXp(x)f(x;w)h(x;Θ)2dx: find the closest approximation h h h to the reference function f f f, in some norm.

A constrained optimization formulation.在这里插入图片描述在这里插入图片描述

Types of compression
在这里插入图片描述在这里插入图片描述

A “Learning-Compression” (LC) algorithm

在这里插入图片描述
在这里插入图片描述

Direct compression (DC) and the beginning of the path
在这里插入图片描述

Compression, generalization and model selection

Compression
Compression can also be seen as a way to prevent overfitting, since it aims at obtaining a smaller model with a similar loss to that of a well-trained reference model.

Generalization
The reference model was not trained well enough, so that the continued training that happens while compressing reduces the error.

Model selection
A good approximate strategy for model selection in neural nets is to train a large enough reference model and compress it as much as possible.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值