Berkeley's SICP in python(一)

本文探讨如何使用Python实现Berkeley的SICP课程中的思想,重点在于利用函数构建抽象,管理和简化逻辑的复杂性。文章强调了解释器设计、模块化、精确假设和团队合作的重要性,并提倡增量测试和DRY(Don't Repeat Yourself)原则。通过docstrings进行清晰的函数注释,以及展示单元测试示例,展示了良好的程序设计特征。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一 Building abstractions with Functions
1 Introduction
所有的计算都是表示信息,指定逻辑并处理它,设计抽象和管理这一逻辑的复杂性。

A language isn’t something you learn so much as something you join

Assignment statement :赋值语句
compound expressions:复合表达式

The design and implementation of interpreters:解释器的设计与实现

Incremental testing, modular design, precise assumptions, and teamwork are themes that persist throughout this course.
Hopefully, they will also persist throughout your computer science career.

As you become familiar with the Python language and vocabulary, this documentation will become a valuable reference source。

Don’t repeat yourself is a central tenet of software engineering。

Docstrings are conventionally triple quoted. The first line describes the job of the function in one line. The following lines can describe arguments and clarify the behavior of the function.

这里写图片描述
(unit testing:>>>(space)sum_naturals(10));

这里写图片描述

Exhaustive unit testing is a hallmark of good program design.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值