POJ 3239 Solution to the n Queens Puzzle

本文介绍了一种解决N皇后问题的有效算法。通过递归搜索和冲突检查,文章提供了一个能够找到任意大小N×N棋盘上皇后放置方案的C++程序实现。特别地,对于N大于3的情况,给出了一个预设的解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Solution to the  n Queens Puzzle
Time Limit: 1000MS Memory Limit: 131072K
Total Submissions: 3469 Accepted: 1275 Special Judge

Description

The eight queens puzzle is the problem of putting eight chess queens on an 8 × 8 chessboard such that none of them is able to capture any other. The puzzle has been generalized to arbitrary n × n boards. Given n, you are to find a solution to the n queens puzzle.

POJ 3239 Solution to the n Queens Puzzle - Night - Time Ends.

Input

The input contains multiple test cases. Each test case consists of a single integer n between 8 and 300 (inclusive). A zero indicates the end of input.

Output

For each test case, output your solution on one line. The solution is a permutation of {1, 2, …, n}. The number in the ith place means the ith-column queen in placed in the row with that number.

Sample Input

8
0

Sample Output

5 3 1 6 8 2 4 7

Source

N皇后问题,主要是为了测试代码:

#include <iostream>
#include <vector>
using namespace std;

class Queen {
public:
    char QChar, BChar;  // 代表皇后和空白的字符
    int * q_in_row;  // q_in_row[i] = j表示在第i行第j列有个皇后
    bool * col_free;  // col_free[i] = true表示第i列没有皇后
    bool * up_free;  // 从右上到左下的对角线是否可以放置皇后
    bool * down_free;  // 从左上到右下的对角线是否可以放置皇后
    int N;  // 皇后个数、正方形棋盘的边长
    bool ONE, NUM, ALL;  // 由于只有一个递归函数,三个变量用于区分是哪一个问题
    bool ONE_FINISH;  // 判断只返回一个解的问题是否已经解决
    int num;  // 所有解的个数
    vector<vector<char> > oneAns;  // 一个解
    vector<vector<vector<char> > > allAns;  // 所有解

    Queen() {
        QChar = 'Q';
        BChar = '.';
        ONE = NUM = ALL = ONE_FINISH = false;
    }

    void changeChar(char q, char b) {  // 可以改变代表皇后和空白的字符
        QChar = q;
        BChar = b;
    }

    void makeBoard(int n) {
        N = n;
        q_in_row = new int[N];
        col_free = new bool[N];
        up_free = new bool[2 * N - 1];
        down_free = new bool[2 * N - 1];
        for (int i = 0; i < N; i++) q_in_row[i] = col_free[i] = true;
        for (int i = 0; i < 2 * N - 1; i++) up_free[i] = down_free[i] = true;
    }

    void deleteBoard() {
        delete []q_in_row;
        delete []col_free;
        delete []up_free;
        delete []down_free;
    }

    void construct_solution() {
        int row = 0;
        if (N % 6 != 2 && N % 6 != 3) {
            if (N % 2 == 0) {
                for (int i = 2; i <= N; i += 2) q_in_row[row++] = i - 1;
                for (int i = 1; i <= N - 1; i += 2) q_in_row[row++] = i - 1;
            } else {
                for (int i = 2; i <= N - 1; i += 2) q_in_row[row++] = i - 1;
                for (int i = 1; i <= N; i += 2) q_in_row[row++] = i - 1;
            }
        } else {
            if (N % 2 == 0) {
                if ((N / 2) % 2 == 0) {
                    for (int i = N / 2; i <= N; i += 2) q_in_row[row++] = i - 1;
                    for (int i = 2; i <= N / 2 - 2; i += 2) q_in_row[row++] = i - 1;
                    for (int i = N / 2 + 3; i <= N - 1; i += 2) q_in_row[row++] = i - 1;
                    for (int i = 1; i <= N / 2 + 1; i += 2) q_in_row[row++] = i - 1;
                } else {
                    for (int i = N / 2; i <= N - 1; i += 2) q_in_row[row++] = i - 1;
                    for (int i = 1; i <= N / 2 - 2; i += 2) q_in_row[row++] = i - 1;
                    for (int i = N / 2 + 3; i <= N; i += 2) q_in_row[row++] = i - 1;
                    for (int i = 2; i <= N / 2 + 1; i += 2) q_in_row[row++] = i - 1;
                }
            } else {
                if ((N / 2) % 2 == 0) {
                    for (int i = N / 2; i <= N - 1; i += 2) q_in_row[row++] = i - 1;
                    for (int i = 2; i <= N / 2 - 2; i += 2) q_in_row[row++] = i - 1;
                    for (int i = N / 2 + 3; i <= N - 2; i += 2) q_in_row[row++] = i - 1;
                    for (int i = 1; i <= N / 2 + 1; i += 2) q_in_row[row++] = i - 1;
                    q_in_row[row++] = N - 1;
                } else {
                    for (int i = N / 2; i <= N - 2; i += 2) q_in_row[row++] = i - 1;
                    for (int i = 1; i <= N / 2 - 2; i += 2) q_in_row[row++] = i - 1;
                    for (int i = N / 2 + 3; i <= N - 1; i += 2) q_in_row[row++] = i - 1;
                    for (int i = 2; i <= N / 2 + 1; i += 2) q_in_row[row++] = i - 1;
                    q_in_row[row++] = N - 1;
                }
            }
        }
        write_in(oneAns);
    }

    vector<vector<char> > Return_an_ans(int n) {
        makeBoard(n);

        if (n > 3) {
            construct_solution();
            deleteBoard();
            return oneAns;
        }

        ONE = true;
        dfs(0);
        deleteBoard();
        return oneAns;
    }

    int Return_all_ans_num(int n) {
        makeBoard(n);
        NUM = true;
        num = 0;
        dfs(0);
        deleteBoard();
        return num;
    }

    vector<vector<vector<char> > > Return_all_ans(int n) {
        makeBoard(n);
        ALL = true;
        dfs(0);
        deleteBoard();
        return allAns;
    }

    void write_in(vector<vector<char> > & a) {
        a.resize(N);
        for (int i = 0; i < N; i++) {
            a[i].resize(N);
            for (int j = 0; j < N; j++) {
                if (q_in_row[i] == j) a[i][j] = QChar;
                else a[i][j] = BChar;
            }
        }
    }

    void dfs(int now) {

        if (now == N) {
            if (ONE) {
                ONE_FINISH = true;
                write_in(oneAns);
                return;
            }
            if (NUM) {
                num++;
                return;
            }
            if (ALL) {
                vector<vector<char> > a;
                write_in(a);
                allAns.push_back(a);
                return;
            }
        }

        for (int col = 0; col < N; col++) {
            if (col_free[col] && up_free[now + col] && down_free[now - col + N - 1]) {
                q_in_row[now] = col;
                col_free[col] = up_free[now + col] = down_free[now - col + N - 1] = false;
                dfs(now + 1);
                if (ONE && ONE_FINISH) return;
                col_free[col] = up_free[now + col] = down_free[now - col + N - 1] = true;
            }
        }
    }
};

int main() {

    std::cout.sync_with_stdio(false);

    while (1) {
        Queen q;
        int n;
        cin >> n;
        if (n == 0) break;

        vector<vector<char> > ans = q.Return_an_ans(n);

        for (int i = 0; i < ans.size(); i++) {
            for (int j = 0; j < ans[i].size(); j++) {
                if (ans[i][j] == 'Q') {
                    if (i) cout << " ";
                    cout << j + 1;
                }
            }
        }
        cout << endl;



    }

    return 0;
}


电动汽车数据集:2025年3K+记录 真实电动汽车数据:特斯拉、宝马、日产车型,含2025年电池规格和销售数据 关于数据集 电动汽车数据集 这个合成数据集包含许多品牌和年份的电动汽车和插电式车型的记录,捕捉技术规格、性能、定价、制造来源、销售和安全相关属性。每一行代表由vehicle_ID标识的唯一车辆列表。 关键特性 覆盖范围:全球制造商和车型组合,包括纯电动汽车和插电式混合动力汽车。 范围:电池化学成分、容量、续航里程、充电标准和速度、价格、产地、自主水平、排放、安全等级、销售和保修。 时间跨度:模型跨度多年(包括传统和即将推出的)。 数据质量说明: 某些行可能缺少某些字段(空白)。 几个分类字段包含不同的、特定于供应商的值(例如,Charging_Type、Battery_Type)。 各列中的单位混合在一起;注意kWh、km、hr、USD、g/km和额定值。 列 列类型描述示例 Vehicle_ID整数每个车辆记录的唯一标识符。1 制造商分类汽车品牌或OEM。特斯拉 型号类别特定型号名称/变体。型号Y 与记录关联的年份整数模型。2024 电池_类型分类使用的电池化学/技术。磷酸铁锂 Battery_Capacity_kWh浮充电池标称容量,单位为千瓦时。75.0 Range_km整数表示充满电后的行驶里程(公里)。505 充电类型主要充电接口或功能。CCS、NACS、CHAdeMO、DCFC、V2G、V2H、V2L Charge_Time_hr浮动充电的大致时间(小时),上下文因充电方法而异。7.5 价格_USD浮动参考车辆价格(美元).85000.00 颜色类别主要外观颜色或饰面。午夜黑 制造国_制造类别车辆制造/组装的国家。美国 Autonomous_Level浮点自动化能力级别(例如0-5),可能包括子级别的小
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值