1192: [HNOI2006]鬼谷子的钱袋

本文深入探讨了二进制拆包原理及其在解决复杂算法问题中的应用,通过实例展示了如何利用对数运算求解特定数学难题,并提供了一段直观的代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

竟然没发现这道大水题。。。。

好像背包九讲里写过。什么二进制拆包。。。这个好像更弱。。。。

答案即为(int)(log2(m))+1

证明?显然。。。。。

代码:

#include<cstdio>
#include<cmath>
int main()
{
    int m;
    scanf("%d",&m);
    printf("%d",(int)log2(m)+1);
    while(1);
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值