大数据工具框架与行业技术应用

大数据技术应用广度与深度持续加大,成为决定企业竞争力的重要因素

十多年来,随着大数据技术的演进与成熟,其在经济领域中的应用也在拓展并持续深化。目前,在包括医疗保健、零售、金融服务、制造业、电信、能源与公共服务的各主要行业中,大数据技术在精细管理、趋势预测、风险识别、决策支持等场景中发挥着越来越重要的作用。数字时代背景下,数据已成为企业核心资产,而大数据技术则是对这项资产开发,利用,赋能企业的重要手段,越来越多的企业认识到用对、用好大数据技术将决定自身的行业竞争力。
在这里插入图片描述

开源趋势下,大数据传统工具已经成熟,个性化新型工具不断加入

狭义上的开源大数据工具是指在开源大生态下,专注于解决海量、多类型数据的连接、存储、管理等功能的工具集合。但从搭建大数据平台角度出发,通常还需要加入AI类组件以帮助数据分析,云原生工具以实现容器编排,另外关系型及各类非关系型数据库被视为大数据的基础,由此得到广义上的大数据工具套件。本报告将以广义大数据工具为研究对象,对其进行分析。
在这里插入图片描述

按功能类型分为5层11模块,合理的工具选型是搭建大数据平台的前提

大数据工具组件是大数据技术输出的载体,数字化与智能化时代下,一套完整的大数据工具可以分为基础层、数据连接层、编排与分析层、人工智能层、监控及可视化层共5层,包括储存格式、数据框架,数据库、数据管理、数据查询与连接、流处理与消息管理、数据编排、在线分析、机器学习运维、记录及监控、数据可视化11个模块。

大数据工具层级图是对大数据工具的总览,开源工具林林总总,企业应先解各个工具的定位与功能,根据自身需求牟定工具类型,再进行具体工具的选型。
在这里插入图片描述

数据存储;沿二进制存储、列存储、云上数据湖的路径演化,多样化容纳数据类型。

大数据框架随数据量的扩大以及处理速度需求提升而迭代;进入大模型时代,大数据框架进而整合模型开发组件。

数据库种类逐渐丰富,支持云原生、大模型开发训练及实时分析;从批量到实时,从单一数据源到跨系统多元数据,从关系型数据到非关系型数据,工具的进化让数据查询更迅速、更灵活、更丝滑。

由简单的消息处理功能发展为功能复杂适应混合场景的数据管理工具,大数据编排工具的演变反映了数据工作流不断变化的需求和复杂性。由对数据的批量抓取分析发展为云原生可处理高并发的实时数据分析。

由基础开发生命管理发展为以AI专有性能指标为核心设置的工具生态体系,由基础开发生命管理发展为以AI专有性能指标为核心设置的工具生态体系。

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

爱炎科技

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值