Suppose a sorted array is rotated at some pivot unknown to you beforehand.
(i.e., 0 1 2 4 5 6 7
might become 4 5 6 7 0 1 2
).
You are given a target value to search. If found in the array return its index, otherwise return -1.
You may assume no duplicate exists in the array.
给出排好序的数组,在某个pivot进行旋转,这样数组变成两段有序,并且第二段的最大值小于第一段的最小值。要求log(n)内找出target的位置。
思路1:找出第一段有序的末尾位置,然后判断在哪一段进行二分查找。
class Solution {
public:
int search(int A[], int n, int target) {
int pivot = findPivot(A, n, target);
if (-1 == pivot) {
return -1;
}
if (target >= A[0] && target <= A[pivot]) {
return binarySearch(A, 0, pivot, target);
}
if (pivot < n - 1) {
return binarySearch(A, pivot + 1, n - 1, target);
}
return -1;
}
private:
int findPivot(int A[], int n, int target) {
int start = 0, end = n - 1;
if (A[start] <= A[end]) {
return end;
}
while (start <= end) {
int middle = (start + end) / 2;
if (middle + 1 <= n && A[middle] > A[middle + 1]) {
return middle;
}
if (A[middle] >= A[start]) {
start = middle + 1;
} else {
end = middle - 1;
}
}
return -1;
}
int binarySearch(int A[], int start, int end, int target) {
while (start <= end) {
int middle = (start + end) / 2;
if (target == A[middle]) {
return middle;
}
else if (target > A[middle]) {
start = middle + 1;
} else {
end = middle - 1;
}
}
return -1; // not found
}
};
这个思路是可以,只是有很多临界条件要考虑。
思路2:直接二分查找,要判断清楚在左边还是右边查找。
class Solution {
public:
int search(int A[], int n, int target) {
int start = 0, end = n - 1;
while (start <= end) {
int middle = (start + end) / 2;
if (target == A[middle]) {
return middle;
}
if (A[middle] < A[end]) {
if (target > A[middle] && target <= A[end]) {
start = middle + 1;
} else {
end = middle - 1;
}
} else {
if (target >= A[start] && target < A[middle]) {
end = middle - 1;
} else {
start = middle + 1;
}
}
}
return -1;
}
};