Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.
For example, given the following triangle
[ [2], [3,4], [6,5,7], [4,1,8,3] ]
The minimum path sum from top to bottom is 11
(i.e., 2 + 3 + 5 + 1 = 11).
Note:
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.
思路1:搜索题,找出从顶到底路径中最小的和,则要在所有路径中即可行解中找出最优解。
直接用dfs查找TLE,因为有很多路径重复计算了。
class Solution {
public:
int minimumTotal(vector<vector<int> > &triangle) {
if (triangle.empty()) return 0;
ans = INT_MAX;
dfs(triangle, 1, 0, triangle[0][0]);
return ans;
}
private:
int ans;
void dfs(vector<vector<int> > &triangle, int depth, int col, int sum) {
// update solution
if (depth == triangle.size()) {
if (sum < ans)
ans = sum;
return;
}
dfs(triangle, depth + 1, col, sum + triangle[depth][col]);
dfs(triangle, depth + 1, col + 1, sum + triangle[depth][col + 1]);
}
};
思路2:为了避免重复计算,采用备忘录,用一个数组保存那个位置到底端的最优解。
class Solution {
public:
int minimumTotal(vector<vector<int> > &triangle) {
if (triangle.empty()) return 0;
for (int i = 0; i < triangle.size(); ++i) {
memory.push_back(vector<int>(triangle[i].size(), INT_MAX));
}
return find(triangle, 0, 0);
}
private:
vector<vector<int> > memory;
int find(vector<vector<int> > &triangle, int depth, int col) {
if (memory[depth][col] != INT_MAX) {
return memory[depth][col];
}
if (depth == triangle.size() - 1) {
return memory[depth][col] = triangle[depth][col];
}
int left_sum = find(triangle, depth + 1, col);
int right_sum = find(triangle, depth + 1, col + 1);
int min_sum = min(left_sum, right_sum);
min_sum += triangle[depth][col];
return memory[depth][col] = min_sum;
}
};
思路3:动态规划,从底向上,存储到低端的最优解,求解当前最优解时,只需用到下一层相邻节点的最优解。
方程:dp[i][j] = min(dp[i+1][j], dp[i+1][j+1]) + triangle[i][j] ( 0 <= i < max_depth-1)。
class Solution {
public:
int minimumTotal(vector<vector<int> > &triangle) {
if (triangle.empty()) return 0;
for (int i = 0; i < triangle.size(); ++i) {
dp.push_back(vector<int>(triangle[i].size(), 0));
}
int depth = triangle.size() - 1;
int col = 0;
for ( ; col < triangle[depth].size(); ++col) {
dp[depth][col] = triangle[depth][col];
}
for (depth = triangle.size() - 2; depth >= 0; --depth) {
for (col = 0; col < triangle[depth].size(); ++col) {
dp[depth][col] = min(dp[depth + 1][col], dp[depth + 1][col + 1]) + triangle[depth][col];
}
}
return dp[0][0];
}
private:
vector<vector<int> > dp;
};