这是一道经典的动态规划的题目,虽然我自己也没有写出来状态转移方程就是了。
用dp[i][j]来表示word1[0…i-1]转移到word2[0…j-1]的最小步数
其中i的取值从1到word1.length(),j的取值从1到word2.length()
很容易有边界条件:
dp[i][0] = i,dp[0][j] = j,表示从一个前缀与空串的转移关系
然后推导状态转移方程
对于dp[i][j],如果word1[i-1]==word2[j-1],意味着dp[i][j]可以不用任何操作就从word1[0…i-2]到word2[0…j-2]的转移中再次转移,也即dp[i][j] = dp[i-1][j-1]
当word1[i-1]!=word2[j-1]时,有三种情况
1.替换。这时候word1[i-1]被替换为了word2[j-1],于是有dp[i][j] = dp[i-1][j-1] + 1
2. 插入。 将word2[j-1]插入到word1中,有word1[0…i-1]+word2[j-1] 转移到 word2[0…j-1],于是dp[i][j] = dp[i][j-1] + 1
3. 删除。将word1[i-1]删除,有word1[0…i-2] 转移到 word2[0…j-1],于是dp[i][j] = dp[i-1][j]+1
#include <iostream>
#include <vector>
#include <string>
#include <algorithm>
using namespace std;
class Solution {
public:
int minDistance(string word1, string word2) {
vector<vector<int>> dp(word1.size()+1);
for(unsigned int i = 0;i<word1.size()+1;i++)
{
dp[i] = vector<int>(word2.size()+1,0);
}
for(unsigned int i = 0;i<=word1.size();i++)
dp[i][0] = i;
for(unsigned int j = 0;j<=word2.size();j++)
dp[0][j] = j;
for(unsigned int i = 1;i<=word1.size();i++)
{
for(unsigned int j = 1;j<=word2.size();j++)
{
if(word1[i-1]==word2[j-1])
{
dp[i][j] = dp[i-1][j-1];
}
else
{
dp[i][j] = min(dp[i-1][j]+1,min(dp[i-1][j-1]+1,dp[i][j-1]+1));
}
}
}
return dp[word1.size()][word2.size()];
}
};
int main(void)
{
Solution s;
cout<<s.minDistance("intention","execution")<<endl;
return 0;
}