GMM和K-means直观对比

本文深入对比了GMM(高斯混合模型)与K-means两种聚类算法的步骤,阐述了两者在计算过程中的相似性与区别。GMM通过计算数据对各高斯分量的响应度来迭代优化模型参数,而K-means则通过计算距离来划分数据类别并更新质心位置。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  

GMM和K-means直观对比

最后我们比较GMM和K-means两个算法的步骤。

GMM:

  • 先计算所有数据对每个分模型的响应度
  • 根据响应度计算每个分模型的参数
  • 迭代

K-means:

  • 先计算所有数据对于K个点的距离,取距离最近的点作为自己所属于的类
  • 根据上一步的类别划分更新点的位置(点的位置就可以看做是模型参数)
  • 迭代

可以看出GMM和K-means还是有很大的相同点的。GMM中数据对高斯分量的响应度就相当于K-means中的距离计算,GMM中的根据响应度计算高斯分量参数就相当于K-means中计算分类点的位置。然后它们都通过不断迭代达到最优。不同的是:GMM模型给出的是每一个观测点由哪个高斯分量生成的概率,而K-means直接给出一个观测点属于哪一类。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值