【知识分享】Modbus通信协议详解

本文深入讲解Modbus通信协议,包括协议的定义、通信方式、Modbus RTU、ASCII、TCP和Plus四种形式的报文结构,以及常用功能码的使用。此外,还介绍了CRC和LRC校验算法的C语言实现,并提到了Modbus在PLC应用中的实践。最后,推荐了FreeModbus库和一些调试工具。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、协议

        这里分两部分,Modbus和协议,首先什么是协议?百度解释下就是:意思是共同计议,协商;经过谈判、协商而制定的共同承认、共同遵守的文件。比如大学毕业找工作的时候,一般要签一份叫“三方协议”的,三方指自己、校方、企业,这份协议里规定了三方需要遵守的一些事项。

二、通信协议

        那通信协议又是什么呢?通信就是双方或多方的交流,通信协议就是规定双方或多方需要共同遵守的交流方式。比如现在规定两个人需要用数字来代表文字,目前只定义了1表示“我”,2表示“你”,3表示“他”,然后现在两个人中有个人说了1,另一个立即就知道说的是“我”,但假如有个人不按规定来说话,说了一个4,那另一个人就不明白他在说什么了。这个例子里面,定义的1、2、3的表示,就是一份简单的通信协议。一般的通信协议,如TCP/IP、蓝牙协议等比Modbus复杂,但万变不离其宗。

三、Modbus

3.1 概述

        接下来就是重头戏了,Modbus通信协议。

        Modbus是一种串行通信协议,是Modicon公司(现在的施耐德电气 Schneider Electric)于1979年为使用可编程逻辑控制器(PLC)通信而发表。Modbus已经成为工业领域通信协议的业界标准(De facto),并且现在是工业电子设备之间常用的连接方式。--摘自百度百科

        Modbus是一种一主一从的一对一通信方式(主机发一帧,从机回一帧的形式),当然也一主多从,但实际也是一对一通信,同一时刻只能有一个从机进行响应。如果需要和多个从机同时通信,这里也支持使用广播,即主机发送指令,所有从机接收指令并执行,但不进行应答。可以参考国际标准(以下简称国标),GBT 19582-2。

        当进行一主多从通信时,主机通过从机ID号来区分要通信的从机设备。从机ID范围为1~247,0为广播地址,248~255为用户自定义地址。

3.2 通信形式

        目前总共有4种通信形式,RTU、ASCII、TCP、Plus。

3.2.1 RTU

        RTU是一种远程终端控制系统,这里指的是Modbus的一种通信形式。一般是基于串口进行通信。其报文格式是十六进制的,由Slave ID+数据+CRC校验三部分组成。数据部分详见上面报文解析。剩下的就是数据校验了,这里用的是CRC校验(循环冗余校验,Cyclic Redundancy Check,简称CRC)。要注意的是,数据部分高位数据在前,低位数据在后,而CRC校验则是低位在前,高位在后

名称

从机ID

数据部分

CRC低位

CRC高位

长度1字节n字节1字节1字节

CRC校验

        CRC(Cyclic Redundancy Checksum)是一种纠错技术,代表循环冗余校验和。CRC的计算原理这里就不讲了,直接上代码。

C语言实现--摘自FreeModbus里的实现

static const UCHAR aucCRCHi[] = {
    0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,
    0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40,
    0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,
    0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,
    0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,
    0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40,
    0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40,
    0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40,
    0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,
    0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40,
    0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,
    0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,
    0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,
    0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,
    0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,
    0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,
    0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,
    0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40,
    0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,
    0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,
    0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,
    0x00, 0xC1, 0x81, 0x40
};

static const UCHAR aucCRCLo[] = {
    0x00, 0xC0, 0xC1, 0x01, 0xC3, 0x03, 0x02, 0xC2, 0xC6, 0x06, 0x07, 0xC7,
    0x05, 0xC5, 0xC4, 0x04, 0xCC, 0x0C, 0x0D, 0xCD, 0x0F, 0xCF, 0xCE, 0x0E,
    0x0A, 0xCA, 0xCB, 0x0B, 0xC9, 0x09, 0x08, 0xC8, 0xD8, 0x18, 0x19, 0xD9,
    0x1B, 0xDB, 0xDA, 0x1A, 0x1E, 0xDE, 0xDF, 0x1F, 0xDD, 0x1D, 0x1C, 0xDC,
    0x14, 0xD4, 0xD5, 0x15, 0xD7, 0x17, 0x16, 0xD6, 0xD2, 0x12, 0x13, 0xD3,
    0x11, 0xD1, 0xD0, 0x10, 0xF0, 0x30, 0x31, 0xF1, 0x33, 0xF3, 0xF2, 0x32,
    0x36, 0xF6, 0xF7, 0x37, 0xF5, 0x35, 0x34, 0xF4, 0x3C, 0xFC, 0xFD, 0x3D,
    0xFF, 0x3F, 0x3E, 0xFE, 0xFA, 0x3A, 0x3B, 0xFB, 0x39, 0xF9, 0xF8, 0x38,
    0x28, 0xE8, 0xE9, 0x29, 0xEB, 0x2B, 0x2A, 0xEA, 0xEE, 0x2E, 0x2F, 0xEF,
    0x2D, 0xED, 0xEC, 0x2C, 0xE4, 0x24, 0x25, 0xE5, 0x27, 0xE7, 0xE6, 0x26,
    0x22, 0xE2, 0xE3, 0x23, 0xE1, 0x21, 0x20, 0xE0, 0xA0, 0x60, 0x61, 0xA1,
    0x63, 0xA3, 0xA2, 0x62, 0x66, 0xA6, 0xA7, 0x67, 0xA5, 0x65, 0x64, 0xA4,
    0x6C, 0xAC, 0xAD, 0x6D, 0xAF, 0x6F, 0x6E, 0xAE, 0xAA, 0x6A, 0x6B, 0xAB,
    0x69, 0xA9, 0xA8, 0x68, 0x78, 0xB8, 0xB9, 0x79, 0xBB, 0x7B, 0x7A, 0xBA,
    0xBE, 0x7E, 0x7F, 0xBF, 0x7D, 0xBD, 0xBC, 0x7C, 0xB4, 0x74, 0x75, 0xB5,
    0x77, 0xB7, 0xB6, 0x76, 0x72, 0xB2, 0xB3, 0x73, 0xB1, 0x71, 0x70, 0xB0,
    0x50, 0x90, 0x91, 0x51, 0x93, 0x53, 0x52, 0x92, 0x96, 0x56, 0x57, 0x97,
    0x55, 0x95, 0x94, 0x54, 0x9C, 0x5C, 0x5D, 0x9D, 0x5F, 0x9F, 0x9E, 0x5E,
    0x5A, 0x9A, 0x9B, 0x5B, 0x99, 0x59, 0x58, 0x98, 0x88, 0x48, 0x49, 0x89,
    0x4B, 0x8B, 0x8A, 0x4A, 0x4E, 0x8E, 0x8F, 0x4F, 0x8D, 0x4D, 0x4C, 0x8C,
    0x44, 0x84, 0x85, 0x45, 0x87, 0x47, 0x46, 0x86, 0x82, 0x42, 0x43, 0x83,
    0x41, 0x81, 0x80, 0x40
};

USHORT
usMBCRC16( UCHAR * pucFrame, USHORT usLen )
{
    UCHAR           ucCRCHi = 0xFF;
    UCHAR           ucCRCLo = 0xFF;
    int             iIndex;

    while( usLen-- )
    {
        iIndex = ucCRCLo ^ *( pucFrame++ );
        ucCRCLo = ( UCHAR )( ucCRCHi ^ aucCRCHi[iIndex] );
        ucCRCHi = aucCRCLo[iIndex];
    }
    return ( USHORT )( ucCRCHi << 8 | ucCRCLo );
}

帧的完整性判断

        国标GBT 19582-2里规定:一帧中两个字符之间间隔时间不超过1.5字符,以大于3.5字符间隔时间作为一帧的结束,波特率高于19200时,间隔时间固定为1.75ms。

        比如现在串口设置的波特率为9600,1个停止位,无校验位,8个数据位(这种设置以下会简写成9600-1N8的形式),那么代入如下公式:

可以算出,此设置下,断帧时间应该为3.645833……ms。

另外国标还规定,串口配置中,默认应该配置有偶校验。

tips:在9600-1N8的串口设置下,可以快速估算数据发送时间,即1个字节发送时间为1ms。

3.2.2 ASCII

        ASCII是一种字符型的通信方式,一般也是基于串口进行通信。其报文格式是以ASCII码编码的,由帧头(:)+Slave ID+数据+LRC校验+帧尾(/r/n)五部分组成,其中Slave ID、数据部分跟RTU完全一样,只不过是以ASCII编码形式,如Slave ID,RTU是01一个字节的时候,ASCII表示就是30 31两个字节。所以实际工业应用场合很少会用到Modbus/ASCII,因为通信效率太低。

        另外跟RTU还有个不同的地方,就是这里使用的校验不是CRC校验,而是LRC校验。

LRC校验

        纵向冗余校验,Longitudinal Redundancy Check,简称:LRC。

LRC具体算法如下:

1、对需要校验的数据(2n个字符)两两组成一个16进制的数值求和。

2、将求和结果与256求模。

3、用256减去所得模值得到校验结果(另一种方法:将模值按位取反然后加1)。

C语言实现--摘自FreeModbus里的实现

static          UCHAR
prvucMBLRC( UCHAR * pucFrame, USHORT usLen )
{
    UCHAR           ucLRC = 0;  /* LRC char initialized */

    while( usLen-- )
    {
        ucLRC += *pucFrame++;   /* Add buffer byte without carry */
    }

    /* Return twos complement */
    ucLRC = ( UCHAR ) ( -( ( CHAR ) ucLRC ) );
    return ucLRC;
}

        因为整个报文都是ASCII的编码形式,所以如果使用单片机串口通信,可以把串口的数据位设置为7位(ASCII的码表范围就是0~0x7F,只用低7位)。

名称

帧头:

从机ID

数据部分

LRC

帧尾/r

帧尾/n

长度1字节2字节n字节1字节1字节1字节

3.2.3 TCP

        TCP是一种网络协议,而Modbus/TCP就是基于网络协议上的一种应用层协议。其报文格式是十六进制的,由报头(2字节的帧序号+2字节的协议类型+2字节的数据长度+1字节的Slave ID)+数据两部分组成。由于该通信方式是基于TCP/IP这种可靠协议上,所以通信不需要有额外的校验机制。

名称

帧序号

协议类型

数据长度

从机ID

数据部分

长度

2字节

2字节

2字节

1字节

n字节

3.2.4 Plus

        Modbus Plus(又称MB+)是一种高速现场总线网络,也是一种典型的令牌总线网。

3.3 报文解析

Modbus功能码表如下:

功能码

名称

作用

01

读取线圈状态

取得一组逻辑线圈的当前状态(ON/OFF)

02

读取输入状态

取得一组开关输入的当前状态(ON/OFF)

03

读取保持寄存器

在一个或多个保持寄存器中取得当前的二进制值

04

读取输入寄存器

在一个或多个输入寄存器中取得当前的二进制值

05

强置单线圈

强置一个逻辑线圈的通断状态

06

预置单寄存器

把具体二进值装入一个保持寄存器

07

读取异常状态

取得8个内部线圈的通断状态,这8个线圈的地址由控制器决定,用户逻辑可以将这些线圈定义,以说明从机状态,短报文适宜于迅速读取状态

08

回送诊断校验

把诊断校验报文送从机,以对通信处理进行评鉴

09

编程(只用于484)

使主机模拟编程器作用,修改PC从机逻辑

10

控询(只用于484)

可使主机与一台正在执行长程序任务从机通信,探询该从机是否已完成其操作任务,仅在含有功能码9的报文发送后,本功能码才发送

11

读取事件计数

可使主机发出单询问,并随即判定操作是否成功,尤其是该命令或其他应答产生通信错误时

12

读取通信事件记录

可是主机检索每台从机的ModBus事务处理通信事件记录。如果某项事务处理完成,记录会给出有关错误

13

编程(184/384 484 584)

可使主机模拟编程器功能修改PC从机逻辑

14

探询(184/384 484 584)

可使主机与正在执行任务的从机通信,定期控询该从机是否已完成其程序操作,仅在含有功能13的报文发送后,本功能码才得发送

15

强置多线圈

强置一串连续逻辑线圈的通断

16

预置多寄存器

把具体的二进制值装入一串连续的保持寄存器

17

报告从机标识

可使主机判断编址从机的类型及该从机运行指示灯的状态

18

(884和MICRO 84)

可使主机模拟编程功能,修改PC状态逻辑

19

重置通信链路

发生非可修改错误后,是从机复位于已知状态,可重置顺序字节

20

读取通用参数(584L)

显示扩展存储器文件中的数据信息

21

写入通用参数(584L)

把通用参数写入扩展存储文件,或修改之

22~64

保留作扩展功能备用

65~72

保留以备用户功能所用

留作用户功能的扩展编码

73~119

非法功能

120~127

保留

留作内部作用

128~255

保留

用于异常应答

        其中常用的功能码有8个(01、02、03、04、05、06、15、16),可以分为位操作和字操作两类,其中,位操作的是线圈和离散输入,两者区别在于,线圈是可读可写的,而离散输入是只读。字操作的是保持寄存器和输入寄存器,两者区别在于,保持寄存器是可读可写的,而输入寄存器是只读的。

3.3.1 线圈

读线圈功能码01,可读单个或多个

主节点发送帧格式(其中MSB为高字节,LSB为低字节)

序号01234567
字段定义ADDRCMDMSBLSBMSBLSBLSBMSB
解释从节点地址命令类型线圈起始地址线圈个数CRC校验

从节点正常应答帧格式:

序号01234L+2L+3L+4
字段定义ADDRCMDLengthData1Data2DataNLSBMSB
解释从节点地址命令类型发送字节数L=n/8+(1)第一个字节数据值第二个字节数据值第N个字节数据值CRC校验

字节数据值的定义:

76543210
线圈值首地址+7首地址+6首地址+5首地址+4首地址+3首地址+2首地址+1首地址

注:数据从低位开始填充,填充完成后还有剩余的高位则全部补0。

从节点异常应答格式:

序号01234
字段定义ADDRCMD+128ErrCodeLSBMSB
解释从节点地址命令类型+128错误码CRC校验

写单个线圈功能码05

主节点发送帧格式:

序号01234567
字段定义ADDRCMDMSBLSBMSBLSBLSBMSB
解释从节点地址命令类型线圈地址数据CRC校验

注:数据为0xFF00表示设置线圈状态为ON,数据为0x0000表示设置线圈状态为OFF。

从节点正常应答帧格式(同发送帧):

序号01234567
字段定义ADDRCMDMSBLSBMSBLSBLSBMSB
解释从节点地址命令类型线圈地址数据CRC校验

从节点异常应答格式:

序号01234
字段定义ADDRCMD+128ErrCodeLSBMSB
解释从节点地址命令类型+128错误码CRC校验

写多个线圈功能码15

主节点发送帧格式:

序号01234567L+6L+7L+8
字段定义ADDRCMDMSBLSBMSBLSBLengthData1DataNLSBMSB
解释从节点地址命令类型起始线圈地址线圈数n发送字节数L=n/8+(1)第一个字节数据值第N个字节数据值CRC校验

字节数据值的定义:

76543210
线圈值首地址+7首地址+6首地址+5首地址+4首地址+3首地址+2首地址+1首地址

注:数据从低位开始填充,填充完成后还有剩余的高位则全部补0。

从节点正常应答帧格式:

序号01234567
字段定义ADDRCMDMSBLSBMSBLSBLSBMSB
解释从节点地址命令类型线圈起始地址线圈个数CRC校验

从节点异常应答格式:

序号01234
字段定义ADDRCMD+128ErrCodeLSBMSB
解释从节点地址命令类型+128错误码CRC校验

3.3.2 保持寄存器

读保持寄存器功能码03,可读单个或多个

主节点发送帧格式:

序号01234567
字段定义ADDRCMDMSBLSBMSBLSBLSBMSB
解释从节点地址命令类型寄存器起始地址寄存器个数CRC校验

从节点正常应答帧格式:

序号01234L+1L+2L+3L+4
字段定义ADDRCMDLengthMSBLSBMSBLSBLSBMSB
解释从节点地址命令类型发送字节数L=n*2第一个寄存器值第N个寄存器值CRC校验

从节点异常应答格式:

序号01234
字段定义ADDRCMD+128ErrCodeLSBMSB
解释从节点地址命令类型+128错误码CRC校验

写单个保持寄存器功能码06

主节点发送帧格式:

序号01234567
字段定义ADDRCMDMSBLSBMSBLSBLSBMSB
解释从节点地址命令类型寄存器地址数据CRC校验

从节点正常应答帧格式(同发送帧):

序号01234567
字段定义ADDRCMDMSBLSBMSBLSBLSBMSB
解释从节点地址命令类型寄存器地址数据CRC校验

从节点异常应答格式:

序号01234
字段定义ADDRCMD+128ErrCodeLSBMSB
解释从节点地址命令类型+128错误码CRC校验

写多个保持寄存器功能码16

主节点发送帧格式:

序号012345678L+5L+6L+7L+8
字段定义ADDRCMDMSBLSBMSBLSBLengthMSBLSBMSBLSBLSBMSB
解释从节点地址命令类型起始寄存器地址寄存器数n发送字节数L=n*2第一个寄存器值第N个寄存器值CRC校验

从节点正常应答帧格式:

序号01234567
字段定义ADDRCMDMSBLSBMSBLSBLSBMSB
解释从节点地址命令类型寄存器起始地址寄存器个数CRC校验

从节点异常应答格式:

序号01234
字段定义ADDRCMD+128ErrCodeLSBMSB
解释从节点地址命令类型+128错误码CRC校验

3.3.3 离散输入--只读

读离散输入的功能码02,可读单个或多个(协议格式跟01功能码完全一致)

主节点发送帧格式:

序号01234567
字段定义ADDRCMDMSBLSBMSBLSBLSBMSB
解释从节点地址命令类型线圈起始地址线圈个数CRC校验

从节点正常应答帧格式:

序号01234L+2L+3L+4
字段定义ADDRCMDLengthData1Data2DataNLSBMSB
解释从节点地址命令类型发送字节数L=n/8+(1)第一个字节数据值第二个字节数据值第N个字节数据值CRC校验

字节数据值的定义:

76543210
线圈值首地址+7首地址+6首地址+5首地址+4首地址+3首地址+2首地址+1首地址

注:数据从低位开始填充,填充完成后还有剩余的高位则全部补0。

从节点异常应答格式:

序号01234
字段定义ADDRCMD+128ErrCodeLSBMSB
解释从节点地址命令类型+128错误码CRC校验

3.3.4 输入寄存器--只读

读输入寄存器的功能码04,可读单个或多个(协议格式跟03功能码完全一致)

主节点发送帧格式:

序号01234567
字段定义ADDRCMDMSBLSBMSBLSBLSBMSB
解释从节点地址命令类型寄存器起始地址寄存器个数CRC校验

从节点正常应答帧格式:

序号01234L+1L+2L+3L+4
字段定义ADDRCMDLengthMSBLSBMSBLSBLSBMSB
解释从节点地址命令类型发送字节数L=n*2第一个寄存器值第N个寄存器值CRC校验

从节点异常应答格式:

序号01234
字段定义ADDRCMD+128ErrCodeLSBMSB
解释从节点地址命令类型+128错误码CRC校验

3.3.5 错误码定义

功能码说明
01非法功能。对于服务器(或从站)来说,询问中接收到的功能码是不可允许的操作,可能是因为功能码仅适用于新设备而被选单元中不可实现同时,还指出服务器(或从站)在错误状态中处理这种请求,例如:它是未配置的,且要求返回寄存器值。
02非法数据地址。对于服务器(或从站)来说,询问中接收的数据地址是不可允许的地址,特别是参考号和传输长度的组合是无效的。对于带有100个寄存器的控制器来说,偏移量96和长度4的请求会成功,而偏移量96和长度5的请求将产生异常码02。
03非法数据值。对于服务器(或从站)来说,询问中包括的值是不可允许的值。该值指示了组合请求剩余结构中的故障。例如:隐含长度是不正确的。modbus协议不知道任何特殊寄存器的任何特殊值的重要意义,寄存器中被提交存储的数据项有一个应用程序期望之外的值。
04从站设备故障。当服务器(或从站)正在设法执行请求的操作时,产生不可重新获得的差错。
05确认。与编程命令一起使用,服务器(或从站)已经接受请求,并且正在处理这个请求,但是需要长持续时间进行这些操作,返回这个响应防止在客户机(或主站)中发生超时错误,客户机(或主机)可以继续发送轮询程序完成报文来确认是否完成处理。
06从属设备忙。与编程命令一起使用。服务器(或从站)正在处理长持续时间的程序命令。当服务器(或从站)空闲时,用户(或主站)应该稍后重新传输报文。
08存储奇偶差错。与功能码20和21以及参考类型6一起使用,指示扩展文件区不能通过一致性校验。服务器(或从站)设法读取记录文件,但是在存储器中发现一个奇偶校验错误。客户机(或主方)可以重新发送请求,但可以在服务器(或从站)设备上要求服务。
10不可用网关路径。与网关一起使用,指示网关不能为处理请求分配输入端口至输出端口的内部通信路径。通常意味着网关是错误配置的或过载的。
11网关目标设备响应失败。与网关一起使用,指示没有从目标设备中获得响应。通常意味着设备未在网络中。

Modbus的PLC应用

        这是一种基于标准Modbus上的PLC应用协议,目前貌似没有一个绝对的标准,不同的PLC厂家的自己不同的定义,但实际通信链路层走的协议还是按标准的Modbus协议来的。比如某PLC厂家规定,读取保持寄存器的地址是40001~49999,当PLC读取40001地址时,实际链路层读的是0000地址(就是在标准的基准地址前加上一个分段标识符,并且地址偏移1)。这个就不细讲了,具体用到哪家的PLC再去查看对应的资料。

四、C语言源码推荐

        Free Modbus,Github上链接https://github.com/armink/FreeModbus_Slave-Master-RTT-STM32,目前更新至V1.6。原本只有从机是开源的,主机收费,但这个作者自己写了主机部分,实现了带操作系统和裸机的接口。其设计架构也是根据操作的寄存器类型和通信方式进行区分。如从机的保持寄存器的实现,则封装在HoldingReg_S文件中,RTU的通信形式,则在mb_rtu中。架构清晰明了,使用起来也很简单,只需要实现mbport.h里的几个接口就行。

        事件类:xMBPortEventInit、xMBPortEventPost、xMBPortEventGet。

        串口类:xMBPortSerialInit、vMBPortClose、xMBPortSerialClose、vMBPortSerialEnable、xMBPortSerialGetByte、xMBPortSerialPutByte。

        定时类:xMBPortTimersInit、xMBPortTimersClose、vMBPortTimersEnable、vMBPortTimersDisable。

        状态回调:pxMBFrameCBByteReceived、pxMBFrameCBTransmitterEmpty、pxMBPortCBTimerExpired。

        具体实现就不讲了,github上有例程,如果有需要的小伙伴可以留下言,这边可以单独出一篇详细解析FreeModbus。

五、常用调试工具

        Modbus Poll,可模拟主机,跟从机进行通信。

        Modbus Slave,可模拟从机,响应主机的通信。

        Modbus Scan,更偏向于PLC的操作界面,个人觉得没有Modbus Poll灵活。

        串口调试助手,可以完全从指令层面上进行深入了解,而且也没有上述工具一些问题(因为一般集成的功能越多,问题可能越多),但有个缺点就是如果作为从机应答,没办法做到及时响应主机的指令。

六、相关知识

        串口通信协议、TCP/IP、RS485/RS232/RS422/ttl、STM32单片机、Github、CRC校验、LRC校验

Modbus通信协议 摘 要:工业控制已从单机控制走向集中监控、集散控制,如今已进入网络时代,工业控制器连网也为网络管理提供了方便。Modbus就是工业控制器的网络协议中的一种。关键词:Modbus协议;串行通信;LRC校验;CRC校验;RS-232C 一、Modbus 协议简介 Modbus 协议是应用于电子控制器上的一种通用语言。通过此协议,控制器相互之间、控制器经由网络(例如以太网)和其它设备之间可以通信。它已经成为一通用工业标准。有了它,不同厂商生产的控制设备可以连成工业网络,进行集中监控。 此协议定义了一个控制器能认识使用的消息结构,而不管它们是经过何种网络进行通信的。它描述了一控制器请求访问其它设备的过程,如果回应来自其它设备的请求,以及怎样侦测错误并记录。它制定了消息域格局和内容的公共格式。 当在一Modbus网络上通信时,此协议决定了每个控制器须要知道它们的设备地址,识别按地址发来的消息,决定要产生何种行动。如果需要回应,控制器将生成反馈信息并用Modbus协议发出。在其它网络上,包含了Modbus协议的消息转换为在此网络上使用的帧或包结构。这种转换也扩展了根据具体的网络解决节地址、路由路径及错误检测的方法。 1、在Modbus网络上转输 标准的Modbus口是使用一RS-232C兼容串行接口,它定义了连接口的针脚、电缆、信号位、传输波特率、奇偶校验。控制器能直接或经由Modem组网。 控制器通信使用主—从技术,即仅一设备(主设备)能初始化传输(查询)。其它设备(从设备)根据主设备查询提供的数据作出相应反应。典型的主设备:主机和可编程仪表。典型的从设备:可编程控制器。 主设备可单独和从设备通信,也能以广播方式和所有从设备通信。如果单独通信,从设备返回一消息作为回应,如果是以广播方式查询的,则不作任何回应。Modbus协议建立了主设备查询的格式:设备(或广播)地址、功能代码、所有要发送的数据、一错误检测域。 从设备回应消息也由Modbus协议构成,包括确认要行动的域、任何要返回的数据、和一错误检测域。如果在消息接收过程中发生一错误,或从设备不能执行其命令,从设备将建立一错误消息并把它作为回应发送出去。 2、在其它类型网络上转输 在其它网络上,控制器使用对等技术通信,故任何控制都能初始和其它控制器的通信。这样在单独的通信过程中,控制器既可作为主设备也可作为从设备。提供的多个内部通道可允许同时发生的传输进程。 在消息位,Modbus协议仍提供了主—从原则,尽管网络通信方法是“对等”。如果一控制器发送一消息,它只是作为主设备,并期望从从设备得到回应。同样,当控制器接收到一消息,它将建立一从设备回应格式并返回给发送的控制器。 3、查询—回应周期 (1)查询 查询消息中的功能代码告之被选中的从设备要执行何种功能。数据段包含了从设备要执行功能的任何附加信息。例如功能代码03是要求从设备读保持寄存器并返回它们的内容。数据段必须包含要告之从设备的信息:从何寄存器开始读及要读的寄存器数量。错误检测域为从设备提供了一种验证消息内容是否正确的方法。 (2)回应 如果从设备产生一正常的回应,在回应消息中的功能代码是在查询消息中的功能代码的回应。数据段包括了从设备收集的数据:象寄存器值或状态。如果有错误发生,功能代码将被修改以用于指出回应消息是错误的,同时数据段包含了描述此错误信息的代码。错误检测域允许主设备确认消息内容是否可用。 二、两种传输方式 控制器能设置为两种传输模式(ASCII或RTU)中的任何一种在标准的Modbus网络通信。用户选择想要的模式,包括串口通信参数(波特率、校验方式等),在配置每个控制器的时候,在一个Modbus网络上的所有设备都必须选择相同的传输模式和串口参数。 ASCII模式 : 地址 功能代码 数据数量 数据1 ... 数据n LRC高字节 LRC低字节 回车 换行 RTU模式 地址 功能代码 数据数量 数据1 ... 数据n CRC高字节 CRC低字节 所选的ASCII或RTU方式仅适用于标准的Modbus网络,它定义了在这些网络上连续传输的消息段的每一位,以及决定怎样将信息打包成消息域和如何解码。 在其它网络上(象MAP和Modbus Plus)Modbus消息被转成与串行传输无关的帧。 1、ASCII模式 当控制器设为在Modbus网络上以ASCII(美国标准信息交换代码)模式通信,在消息中的每个8Bit字节都作为两个ASCII字符发送。这种方式的主要优点是字符发送的时间间隔可达到1秒而不产生错误。 代码系统 • 十六进制,ASCII字符0...9,A...F • 消息中的每个ASCII字符都是一个十六进制字符组成 每个字节的位 • 1个起始位 • 7个数据位,最小的有效位先发送 • 1个奇偶校验位,无校验则无 • 1个停止位(有校验时),2个Bit(无校验时) 错误检测域 • LRC(纵向冗长检测) 2、RTU模式 当控制器设为在Modbus网络上以RTU(远程终端单元)模式通信,在消息中的每个8Bit字节包含两个4Bit的十六进制字符。这种方式的主要优点是:在同样的波特率下,可比ASCII方式传送更多的数据。 代码系统 • 8位二进制,十六进制数0...9,A...F • 消息中的每个8位域都是一个两个十六进制字符组成 每个字节的位 • 1个起始位 • 8个数据位,最小的有效位先发送 • 1个奇偶校验位,无校验则无 • 1个停止位(有校验时),2个Bit(无校验时) 错误检测域 • CRC(循环冗长检测) 三、Modbus消息帧 两种传输模式中(ASCII或RTU),传输设备以将Modbus消息转为有起点和终点的帧,这就允许接收的设备在消息起始处开始工作,读地址分配信息,判断哪一个设备被选中(广播方式则传给所有设备),判知何时信息已完成。部分的消息也能侦测到并且错误能设置为返回结果。 1、ASCII帧 使用ASCII模式,消息以冒号(:)字符(ASCII码 3AH)开始,以回车换行符结束(ASCII码 0DH,0AH)。 其它域可以使用的传输字符是十六进制的0...9,A...F。网络上的设备不断侦测“:”字符,当有一个冒号接收到时,每个设备都解码下个域(地址域)来判断是否发给自己的。 消息中字符间发送的时间间隔最长不能超过1秒,否则接收的设备将认为传输错误。一个典型消息帧如下所示: 图2 ASCII消息帧 2、RTU帧 使用RTU模式,消息发送至少要以3.5个字符时间的停顿间隔开始。在网络波特率下多样的字符时间,这是最容易实现的(如下图的T1-T2-T3-T4所示)。传输的第一个域是设备地址。可以使用的传输字符是十六进制的0...9,A...F。网络设备不断侦测网络总线,包括停顿间隔时间内。当第一个域(地址域)接收到,每个设备都进行解码以判断是否发往自己的。在最后一个传输字符之后,一个至少3.5个字符时间的停顿标定了消息的结束。一个新的消息可在此停顿后开始。 整个消息帧必须作为一连续的流转输。如果在帧完成之前有超过1.5个字符时间的停顿时间,接收设备将刷新不完整的消息并假定下一字节是一个新消息的地址域。同样地,如果一个新消息在小于3.5个字符时间内接着前个消息开始,接收的设备将认为它是前一消息的延续。这将导致一个错误,因为在最后的CRC域的值不可能是正确的。一典型的消息帧如下所示: 图3 RTU消息帧 3、地址域 消息帧的地址域包含两个字符(ASCII)或8Bit(RTU)。可能的从设备地址是0...247 (十进制)。单个设备的地址范围是1...247。主设备通过将要联络的从设备的地址放入消息中的地址域来选通从设备。当从设备发送回应消息时,它把自己的地址放入回应的地址域中,以便主设备知道是哪一个设备作出回应。 地址0是用作广播地址,以使所有的从设备都能认识。当Modbus协议用于更高水准的网络,广播可能不允许或以其它方式代替。 4、如何处理功能域 消息帧中的功能代码域包含了两个字符(ASCII)或8Bits(RTU)。可能的代码范围是十进制的1...255。当然,有些代码是适用于所有控制器,有此是应用于某种控制器,还有些保留以备后用。 当消息从主设备发往从设备时,功能代码域将告之从设备需要执行哪些行为。例如去读取输入的开关状态,读一组寄存器的数据内容,读从设备的诊断状态,允许调入、记录、校验在从设备中的程序等。 当从设备回应时,它使用功能代码域来指示是正常回应(无误)还是有某种错误发生(称作异议回应)。对正常回应,从设备仅回应相应的功能代码。对异议回应,从设备返回一等同于正常代码的代码,但最重要的位置为逻辑1。 例如:一从主设备发往从设备的消息要求读一组保持寄存器,将产生如下功能代码: 0 0 0 0 0 0 1 1 (十六进制03H) 对正常回应,从设备仅回应同样的功能代码。对异议回应,它返回: 1 0 0 0 0 0 1 1 (十六进制83H) 除功能代码因异议错误作了修改外,从设备将一独特的代码放到回应消息的数据域中,这能告诉主设备发生了什么错误。 主设备应用程序得到异议的回应后,典型的处理过程是重发消息,或者诊断发给从设备的消息并报告给操作员。 5、数据域 数据域是由两个十六进制数集合构成的,范围00...FF。根据网络传输模式,这可以是由一对ASCII字符组成或由一RTU字符组成。 从主设备发给从设备消息的数据域包含附加的信息:从设备必须用于进行执行由功能代码所定义的所为。这包括了象不连续的寄存器地址,要处理项的数目,域中实际数据字节数。 例如,如果主设备需要从设备读取一组保持寄存器(功能代码03),数据域指定了起始寄存器以及要读的寄存器数量。如果主设备写一组从设备的寄存器(功能代码10十六进制),数据域则指明了要写的起始寄存器以及要写的寄存器数量,数据域的数据字节数,要写入寄存器的数据。 如果没有错误发生,从从设备返回的数据域包含请求的数据。如果有错误发生,此域包含一异议代码,主设备应用程序可以用来判断采取下一步行动。 在某种消息中数据域可以是不存在的(0长度)。例如,主设备要求从设备回应通信事件记录(功能代码0B十六进制),从设备不需任何附加的信息。 6、错误检测域 标准的Modbus网络有两种错误检测方法。错误检测域的内容视所选的检测方法而定。 ASCII 当选用ASCII模式作字符帧,错误检测域包含两个ASCII字符。这是使用LRC(纵向冗长检测)方法对消息内容计算得出的,不包括开始的冒号符及回车换行符。LRC字符附加在回车换行符前面。 RTU 当选用RTU模式作字符帧,错误检测域包含一16Bits值(用两个8位的字符来实现)。错误检测域的内容是通过对消息内容进行循环冗长检测方法得出的。CRC域附加在消息的最后,添加时先是低字节然后是高字节。故CRC的高位字节是发送消息的最后一个字节。 7、字符的连续传输 当消息在标准的Modbus系列网络传输时,每个字符或字节以如下方式发送(从左到右): 最低有效位...最高有效位 使用ASCII字符帧时,位的序列是: 图4. 位顺序(ASCII) 图4. 位顺序(RTU) 四、错误检测方法 标准的Modbus串行网络采用两种错误检测方法。奇偶校验对每个字符都可用,帧检测(LRC或CRC)应用于整个消息。它们都是在消息发送前由主设备产生的,从设备在接收过程中检测每个字符和整个消息帧。 用户要给主设备配置一预先定义的超时时间间隔,这个时间间隔要足够长,以使任何从设备都能作为正常反应。如果从设备测到一传输错误,消息将不会接收,也不会向主设备作出回应。这样超时事件将触发主设备来处理错误。发往不存在的从设备的地址也会产生超时。 1、奇偶校验 用户可以配置控制器是奇或偶校验,或无校验。这将决定了每个字符中的奇偶校验位是如何设置的。 如果指定了奇或偶校验,“1”的位数将算到每个字符的位数中(ASCII模式7个数据位,RTU中8个数据位)。例如RTU字符帧中包含以下8个数据位: 1 1 0 0 0 1 0 1 整个“1”的数目是4个。如果便用了偶校验,帧的奇偶校验位将是0,便得整个“1”的个数仍是4个。如果便用了奇校验,帧的奇偶校验位将是1,便得整个“1”的个数是5个。 如果没有指定奇偶校验位,传输时就没有校验位,也不进行校验检测。代替一附加的停止位填充至要传输的字符帧中。 2、LRC检测 使用ASCII模式,消息包括了一基于LRC方法的错误检测域。LRC域检测了消息域中除开始的冒号及结束的回车换行号外的内容。 LRC域是一个包含一个8位二进制值的字节。LRC值由传输设备来计算并放到消息帧中,接收设备在接收消息的过程中计算LRC,并将它和接收到消息中LRC域中的值比较,如果两值不等,说明有错误。 LRC方法是将消息中的8Bit的字节连续累加,丢弃了进位。 LRC简单函数如下: static unsigned char LRC(auchMsg,usDataLen) unsigned char *auchMsg ; /* 要进行计算的消息 */ unsigned short usDataLen ; /* LRC 要处理的字节的数量*/ { unsigned char uchLRC = 0 ; /* LRC 字节初始化 */ while (usDataLen--) /* 传送消息 */ uchLRC += *auchMsg++ ; /* 累加*/ return ((unsigned char)(-((char_uchLRC))) ; } 3、CRC检测 使用RTU模式,消息包括了一基于CRC方法的错误检测域。CRC域检测了整个消息的内容。 CRC域是两个字节,包含一16位的二进制值。它由传输设备计算后加入到消息中。接收设备重新计算收到消息的CRC,并与接收到的CRC域中的值比较,如果两值不同,则有误。 CRC是先调入一值是全“1”的16位寄存器,然后调用一过程将消息中连续的8位字节各当前寄存器中的值进行处理。仅每个字符中的8Bit数据对CRC有效,起始位和停止位以及奇偶校验位均无效。 CRC产生过程中,每个8位字符都单独和寄存器内容相或(OR),结果向最低有效位方向移动,最高有效位以0填充。LSB被提取出来检测,如果LSB为1,寄存器单独和预置的值或一下,如果LSB为0,则不进行。整个过程要重复8次。在最后一位(第8位)完成后,下一个8位字节又单独和寄存器的当前值相或。最终寄存器中的值,是消息中所有的字节都执行之后的CRC值。 CRC添加到消息中时,低字节先加入,然后高字节。 CRC简单函数如下: unsigned short CRC16(puchMsg, usDataLen) unsigned char *puchMsg ; /* 要进行CRC校验的消息 */ unsigned short usDataLen ; /* 消息中字节数 */ { unsigned char uchCRCHi = 0xFF ; /* 高CRC字节初始化 */ unsigned char uchCRCLo = 0xFF ; /* 低CRC 字节初始化 */ unsigned uIndex ; /* CRC循环中的索引 */ while (usDataLen--) /* 传输消息缓冲区 */ { uIndex = uchCRCHi ^ *puchMsgg++ ; /* 计算CRC */ uchCRCHi = uchCRCLo ^ auchCRCHi[uIndex} ; uchCRCLo = auchCRCLo[uIndex] ; } return (uchCRCHi << 8 | uchCRCLo) ; } /* CRC 高位字节值表 */ static unsigned char auchCRCHi[] = { 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40 } ; /* CRC低位字节值表*/ static char auchCRCLo[] = { 0x00, 0xC0, 0xC1, 0x01, 0xC3, 0x03, 0x02, 0xC2, 0xC6, 0x06, 0x07, 0xC7, 0x05, 0xC5, 0xC4, 0x04, 0xCC, 0x0C, 0x0D, 0xCD, 0x0F, 0xCF, 0xCE, 0x0E, 0x0A, 0xCA, 0xCB, 0x0B, 0xC9, 0x09, 0x08, 0xC8, 0xD8, 0x18, 0x19, 0xD9, 0x1B, 0xDB, 0xDA, 0x1A, 0x1E, 0xDE, 0xDF, 0x1F, 0xDD, 0x1D, 0x1C, 0xDC, 0x14, 0xD4, 0xD5, 0x15, 0xD7, 0x17, 0x16, 0xD6, 0xD2, 0x12, 0x13, 0xD3, 0x11, 0xD1, 0xD0, 0x10, 0xF0, 0x30, 0x31, 0xF1, 0x33, 0xF3, 0xF2, 0x32, 0x36, 0xF6, 0xF7, 0x37, 0xF5, 0x35, 0x34, 0xF4, 0x3C, 0xFC, 0xFD, 0x3D, 0xFF, 0x3F, 0x3E, 0xFE, 0xFA, 0x3A, 0x3B, 0xFB, 0x39, 0xF9, 0xF8, 0x38, 0x28, 0xE8, 0xE9, 0x29, 0xEB, 0x2B, 0x2A, 0xEA, 0xEE, 0x2E, 0x2F, 0xEF, 0x2D, 0xED, 0xEC, 0x2C, 0xE4, 0x24, 0x25, 0xE5, 0x27, 0xE7, 0xE6, 0x26, 0x22, 0xE2, 0xE3, 0x23, 0xE1, 0x21, 0x20, 0xE0, 0xA0, 0x60, 0x61, 0xA1, 0x63, 0xA3, 0xA2, 0x62, 0x66, 0xA6, 0xA7, 0x67, 0xA5, 0x65, 0x64, 0xA4, 0x6C, 0xAC, 0xAD, 0x6D, 0xAF, 0x6F, 0x6E, 0xAE, 0xAA, 0x6A, 0x6B, 0xAB, 0x69, 0xA9, 0xA8, 0x68, 0x78, 0xB8, 0xB9, 0x79, 0xBB, 0x7B, 0x7A, 0xBA, 0xBE, 0x7E, 0x7F, 0xBF, 0x7D, 0xBD, 0xBC, 0x7C, 0xB4, 0x74, 0x75, 0xB5, 0x77, 0xB7, 0xB6, 0x76, 0x72, 0xB2, 0xB3, 0x73, 0xB1, 0x71, 0x70, 0xB0, 0x50, 0x90, 0x91, 0x51, 0x93, 0x53, 0x52, 0x92, 0x96, 0x56, 0x57, 0x97, 0x55, 0x95, 0x94, 0x54, 0x9C, 0x5C, 0x5D, 0x9D, 0x5F, 0x9F, 0x9E, 0x5E, 0x5A, 0x9A, 0x9B, 0x5B, 0x99, 0x59, 0x58, 0x98, 0x88, 0x48, 0x49, 0x89, 0x4B, 0x8B, 0x8A, 0x4A, 0x4E, 0x8E, 0x8F, 0x4F, 0x8D, 0x4D, 0x4C, 0x8C, 0x44, 0x84, 0x85, 0x45, 0x87, 0x47, 0x46, 0x86, 0x82, 0x42, 0x43, 0x83, 0x41, 0x81, 0x80, 0x40 } ;  ModBus网络是一个工业通信系统,由带智能终端的可编程序控制器和计算机通过公用线路或局部专用线路连接而成。其系统结构既包括硬件、亦包括软件。它可应用于各种数据采集和过程监控。下表1是ModBus的功能码定义。 表1 ModBus功能码 ModBus网络只是一个主机,所有通信都由他发出。网络可支持247个之多的远程从属控制器,但实际所支持的从机数要由所用通信设备决定。采用这个系统,各PC可以和中心主机交换信息而不影响各PC执行本身的控制任务。表2是ModBus各功能码对应的数据类型。 表2 ModBus功能码与数据类型对应表 (1)ModBus的传输方式 在ModBus系统中有2种传输模式可选择。这2种传输模式与从机PC通信的能力是同等的。选择时应视所用ModBus主机而定,每个ModBus系统只能使用一种模式,不允许2种模式混用。一种模式是ASCII(美国信息交换码),另一种模式是RTU(远程终端设备)这两种模式的定义见表3 ASCII可打印字符便于故障检测,而且对于用高级语言(如Fortan)编程的主计算机及主PC很适宜。RTU则适用于机器语言编程的计算机和PC主机。 用RTU模式传输的数据是8位二进制字符。如欲转换为ASCII模式,则每个RTU字符首先应分为高位和低位两部分,这两部分各含4位,然后转换成十六进制等量值。用以构成报文的ASCII字符都是十六进制字符。ASCII模式使用的字符虽是RTU模式的两倍,但ASCII数据的译玛和处理更为容易一些,此外,用RTU模式时报文字符必须以连续数据流的形式传送,用ASCII模式,字符之间可产生长达1s的间隔,以适应速度较快的机器。 表4给出了以RTU方式读取整数据的例子 以RTU方式读取整数据的例子 十六进制数4124表示的十进制整数为16676,错误校验值要根据传输方式而定。 (2)ModBus的数据校验方式 CRC-16(循环冗余错误校验) CRC-16错误校验程序如下:报文(此处只涉及数据位,不指起始位、停止位和任选的奇偶校验位)被看作是一个连续的二进制,其最高有效位(MSB)首选发送。报文先与X↑16相乘(左移16位),然后看X↑16+X↑15+X↑2+1除,X↑16+X↑15+X↑2+1可以表示为二进制数11000000000000101。整数商位忽略不记,16位余数加入该报文(MSB先发送),成为2个CRC校验字节。余数中的1全部初始化,以免所有的零成为一条报文被接收。经上述处理而含有CRC字节的报文,若无错误,到接收设备后再被同一多项式(X↑16+X↑15+X↑2+1)除,会得到一个零余数(接收设备核验这个CRC字节,并将其与被传送的CRC比较)。全部运算以2为模(无进位)。 习惯于成串发送数据的设备会首选送出字符的最右位(LSB-最低有效位)。而在生成CRC情况下,发送首位应是被除数的最高有效位MSB。由于在运算中不用进位,为便于操作起见,计算CRC时设MSB在最右位。生成多项式的位序也必须反过来,以保持一致。多项式的MSB略去不记,因其只对商有影响而不影响余数。 生成CRC-16校验字节的步骤如下: ①装如一个16位寄存器,所有数位均为1。 ②该16位寄存器的高位字节与开始8位字节进行“异或”运算。运算结果放入这个16位寄存器。 ③把这个16寄存器向右移一位。 ④若向右(标记位)移出的数位是1,则生成多项式1010000000000001和这个寄存器进行“异或”运算;若向右移出的数位是0,则返回③。 ⑤重复③和④,直至移出8位。 ⑥另外8位与该十六位寄存器进行“异或”运算。 ⑦重复③~⑥,直至该报文所有字节均与16位寄存器进行“异或”运算,并移位8次。 ⑧这个16位寄存器的内容即2字节CRC错误校验,被加到报文的最高有效位。 另外,在某些非ModBus通信协议中也经常使用CRC16作为校验手段,而且产生了一些CRC16的变种,他们是使用CRC16多项式X↑16+X↑15+X↑2+1,单首次装入的16位寄存器为0000;使用CRC16的反序X↑16+X↑14+X↑1+1,首次装入寄存器值为0000或FFFFH。 LRC(纵向冗余错误校验) LRC错误校验用于ASCII模式。这个错误校验是一个8位二进制数,可作为2个ASCII十六进制字节传送。把十六进制字符转换成二进制,加上无循环进位的二进制字符和二进制补码结果生成LRC错误校验(参见图)。这个LRC在接收设备进行核验,并与被传送的LRC进行比较,冒号(:)、回车符号(CR)、换行字符(LF)和置入的其他任何非ASCII十六进制字符在运算时忽略不计。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

知识噬元兽

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值