Ultra-QuickSort
| Time Limit: 7000MS | Memory Limit: 65536K | |
| Total Submissions: 38688 | Accepted: 13950 |
Description
In this problem, you have to analyze a particular sorting algorithm. The algorithm processes a sequence of n distinct integers by swapping two adjacent sequence elements until the sequence is
sorted in ascending order. For the input sequence Ultra-QuickSort produces the output
Your task is to determine how many swap operations Ultra-QuickSort needs to perform in order to sort a given input sequence.
Input
The input contains several test cases. Every test case begins with a line that contains a single integer n < 500,000 -- the length of the input sequence. Each of the the following n lines contains a single integer 0 ≤ a[i] ≤ 999,999,999, the i-th input sequence
element. Input is terminated by a sequence of length n = 0. This sequence must not be processed.
Output
For every input sequence, your program prints a single line containing an integer number op, the minimum number of swap operations necessary to sort the given input sequence.
Sample Input
5 9 1 0 5 4 3 1 2 3 0
Sample Output
6 0
思路:
归并排序求逆序数,用作模版
代码:
#include <stdio.h>
#define lld I64d
#define LL __int64
#define N 1000050
LL num[N];
LL temp[N]; // 归并排序的辅助数组
LL count = 0;
void Merge(LL * array, int first, int middle, int last)
{
int i = first, j = middle + 1, cur = 0;
while(i <= middle && j <= last){
if(array[i] < array[j])
temp[cur ++] = array[i ++];
else{
temp[cur ++] = array[j ++];
count += middle - i + 1;
}
}
while(i <= middle)
temp[cur ++] = array[i ++];
while(j <= last)
temp[cur ++] = array[j ++];
for (int k = 0; k < cur; k ++)
array[first ++] = temp[k];
}
void MergeSort(LL *array, int first, int last)
{
if (first == last)
return ;
int middle = first + (last - first) / 2;
MergeSort(array, first, middle);
MergeSort(array, middle+1, last);
Merge(array, first, middle, last);
}
int main()
{
int n, i;
while(scanf("%d", &n), n){
count = 0;
for(i = 0; i < n; i ++)
scanf("%lld", &num[i]);
MergeSort(num, 0, n - 1);
/* for(i = 0; i < n; i ++)
printf("%lld ", num[i]);
printf("\n"); */
printf("%lld\n", count);
}
return 0;
}

本文介绍了一种名为Ultra-QuickSort的排序算法,并通过分析逆序数来确定完成排序所需的最少交换次数。该算法适用于长度不超过500,000的整数序列,通过对输入序列进行归并排序,计算并输出逆序数。
1632

被折叠的 条评论
为什么被折叠?



