keras入门(三) VGG 10折交叉验证实现cifar10的分类

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Sun Sep 30 17:12:12 2018


这是用keras搭建的vgg16网络
这是很经典的cnn,在图像和时间序列分析方面有很多的应用
@author: lg
"""
#################

import keras
from keras import regularizers
from keras.datasets import cifar10
from keras.models import Sequential
from keras.layers import Conv2D, MaxPooling2D, Dense, Dropout, Flatten, BatchNormalization
from keras.optimizers import SGD
import os
import argparse
import random
import numpy as np
from scipy.misc import imread, imresize, imsave
import pickle

from sklearn.model_selection import StratifiedKFold

parser = argparse.ArgumentParser()
parser.add_argument('--train_dir', default='./train/')
parser.add_argument('--test_dir', default='./test/')
parser.add_argument('--log_dir', default='./')
parser.add_argument('--batch_size', default=16)
parser.add_argument('--gpu', type=int, default=0)
args = parser.parse_args()

os.environ['CUDA_VISIBLE_DEVICES'] = str(args.gpu)
type_list = ['cat', 'dog']


def vgg_16_net():
    model = Sequential()
    model.add(Conv2D(64, (3, 3), input_shape=(32, 32, 3), padding='same', activation='relu', name='conv1_block'))
    model.add(Conv2D(64, (3, 3), activation='relu', padding='same', name='conv2_block'))
    model.add(BatchNormalization())
    model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))
    model.add(Conv2D(128, (3, 3), activation='relu', padding='same', name='conv3_block'))
    model.add(Conv2D(128, (3, 3), activation='relu', padding='same', name='conv4_block'))
    model.add(BatchNormalization())
    model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))
    model.add(Conv2D(256, (3, 3), activation='relu', padding='same', name='conv5_block'))
    model.add(Conv2D(256, (3, 3), activation='relu', padding='same', name='conv6_block'))
    model.add(Conv2D(256, (1, 1), activation='relu', padding='same', name='conv7_block'))
    model.add(BatchNormalization())
    model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))
    model.add(Conv2D(512, (3, 3), activation='relu', padding='same', name='conv8_block'))
    model.add(Conv2D(512, (3, 3), activation='relu', padding='same', name='conv9_block'))
    model.add(Conv2D(512, (1, 1), activation='relu', padding='same', name='conv10_block'))
    model.add(BatchNormalization())
    model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))
    model.add(Conv2D(512, (3, 3), activation='relu', padding='same', name='conv11_block'))
    model.add(Conv2D(512, (3, 3), activation='relu', padding='same', name='conv12_block'))
    model.add(Conv2D(512, (1, 1), activation='relu', padding='same', name='conv13_block'))
    model.add(BatchNormalization())
    model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))
    model.add(Flatten())
    model.add(Dense(2048, activation='relu'))
    model.add(Dropout(0.5))
    model.add(Dense(4096, activation='relu'))
    model.add(Dropout(0.5))
    model.add(Dense(10, activation='softmax'))
    #model.add(Dense(1, activation='sigmoid'))
    return model


def prepare_data():
    file_dict1 = unpickle('F:/cifar10/cifar-10-batches-py/data_batch_1')
    label = file_dict1[b'labels']
    image = file_dict1[b'data']
    print(type(image))
    file_dict2 = unpickle('F:/cifar10/cifar-10-batches-py/data_batch_2')
    label = label + file_dict2[b'labels']
    image = np.vstack((image, file_dict2[b'data']))
    file_dict3 = unpickle('F:/cifar10/cifar-10-batches-py/data_batch_3')
    label = label + file_dict3[b'labels']
    image = np.vstack((image, file_dict3[b'data']))
    file_dict4 = unpickle('F:/cifar10/cifar-10-batches-py/data_batch_4')
    label = label + file_dict4[b'labels']
    image = np.vstack((image, file_dict4[b'data']))
    file_dict5 = unpickle('F:/cifar10/cifar-10-batches-py/data_batch_5')
    label = label + file_dict5[b'labels']
    image = np.vstack((image, file_dict5[b'data']))
    image = np.reshape(image/255, (-1, 32, 32, 3))
    label = keras.utils.to_categorical(label, 10)
    #seed = 7
    #np.random.seed(seed)
    #train_data, test_data, train_label, test_label = train_test_split(image, label, test_size=0.2, random_state=0)
    #train_num = int(len(label) * 0.8 )
    #train_data, train_label, test_data, test_label = image[0:train_num], label[0:train_num], image[train_num:], label[train_num:]
    # (X_train, y_train), (X_test, y_test) = cifar10.load_data()
    # train_data = np.reshape(X_train/255, (-1, 32, 32, 3))
    # train_label = keras.utils.to_categorical(y_train, 10)
    # test_data = np.reshape(X_test/255, (-1, 32, 32, 3))
    # test_label = keras.utils.to_categorical(y_test, 10)
    # return train_data, train_label, test_data, test_label
    return image, label

def unpickle(file):
    with open(file, 'rb') as fo:
        file_dict = pickle.load(fo, encoding='bytes')
    return file_dict


def train():
    kfold = StratifiedKFold(n_splits=10, shuffle=True, random_state=7)
    data, label = prepare_data()
    index = 1
    for train, test in kfold.split(data, label.argmax(1)):
        model = vgg_16_net()
        sgd = SGD(lr=0.001, decay=1e-8, momentum=0.9, nesterov=True)
        model.compile(optimizer=sgd, loss='categorical_crossentropy', metrics=['accuracy'])
        model.fit(data[train], label[train], validation_data=(data[test], label[test]), epochs=20, batch_size=32, shuffle=True)
        #train_data, train_label = prepare_data()
        #model.fit(train_data, train_label, batch_size=64, epochs=20, shuffle=True, validation_split=0.2)
        model.save_weights(args.log_dir + 'model_' + str(index) + '.h5')
        index = index + 1



if __name__ == '__main__':
    try:
        train()
        #model.load_weights(args.log_dir + '/model.h5')
        #predict(model)
    except Exception  as err:
        print(err)

最开始没有使用交叉验证,但是测试集与验证集的准确率一直维持在50%~60%,基本属于盲猜系列。原因大概是数据量太多,进行随机划分时,测试数据的分类不是很均匀。所以采用了交叉验证的方式,最终测试集与训练集的准确率能够达到99%,应该是有点过拟合了,结果还是非常满意的。

评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值