POJ 5636 Shortest Path(floyd)

本文介绍了一种在特定路径图中寻找最短路径的方法。该方法通过对预设的额外节点进行预处理,优化了查询效率,能够快速计算任意两点间的最短距离。

Shortest Path

Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)
Total Submission(s): 1072    Accepted Submission(s): 340


Problem Description
There is a path graph G=(V,E) with n vertices. Vertices are numbered from 1 to n and there is an edge with unit length between i and i+1 (1i<n). To make the graph more interesting, someone adds three more edges to the graph. The length of each new edge is 1.

You are given the graph and several queries about the shortest path between some pairs of vertices.
 

Input
There are multiple test cases. The first line of input contains an integer T, indicating the number of test cases. For each test case:

The first line contains two integer n and m (1n,m105) -- the number of vertices and the number of queries. The next line contains 6 integers a1,b1,a2,b2,a3,b3 (1a1,a2,a3,b1,b2,b3n), separated by a space, denoting the new added three edges are (a1,b1)(a2,b2)(a3,b3).

In the next m lines, each contains two integers si and ti (1si,tin), denoting a query.

The sum of values of m in all test cases doesn't exceed 106.
 

Output
For each test cases, output an integer S=(i=1mizi) mod (109+7), where zi is the answer for i-th query.
 

Sample Input
1 10 2 2 4 5 7 8 10 1 5 3 1
 

Sample Output
7
 

题目大意:给一个含有n个节点的图,任意节点i和i+1之间有权值为1的边,现在往里面加入三条边权值为1的边,求S=(i=1mizi),zi为第i对点之间的最短距离。

解题思路:直接对所给的6个点求任意两点的最短路,然后计算所给点对通过这些点的最短路即可。
代码如下:
/*
time:
author:tpbluesky
answer:
*/
#include <iostream>
#include <cstdio>
#include <cstring>
#include <string>
#include <algorithm>
#include <vector>
#include <set>
#include <list>
#include <map>
#include <stack>
#include <queue>
#include <cmath>
#include <cstdlib>
#include <sstream>
#define inf 0x3f3f3f3f
#define eps 1e-6
#define sqr(x) ((x)*(x))
using namespace std;
typedef long long ll;
const int maxn = 10;
const int mod = 1000000007;

int a[maxn], b[maxn], n, m;
int mp[maxn][maxn];

int getpos(int x){
	return lower_bound(a,a+6,x)-a;
}

int main()
{
	int T;
	cin>>T;
	while(T--){
		scanf("%d%d",&n,&m);
		for(int i = 0;i < 6;++i){
			scanf("%d",&a[i]);
			b[i] = a[i];
		}
		sort(a,a+6);
		memset(mp,0,sizeof(mp));
		for(int i = 0;i < 6;++i)
			for(int j = 0;j < 6;++j)
				mp[i][j] = abs(a[i]-a[j]);
		for(int i = 0;i < 6;i+= 2){
			int x = getpos(b[i]);
			int y = getpos(b[i+1]);
			mp[x][y] = mp[y][x] = min(mp[x][y],1);
		} 
		//floyd
		for(int k = 0;k < 6;++k)
			for(int i = 0;i < 6;++i)
				for(int j = 0;j < 6;++j)
					mp[i][j] = min(mp[i][j],mp[i][k]+mp[k][j]);
		ll ans = 0;
		int x, y;
		for(int k = 1;k <= m;++k){
			scanf("%d%d",&x,&y);
			ll res = abs(x-y);
			for(int i = 0;i < 6;++i)
				for(int j = 0;j < 6;++j)
					res = min(res,(ll)(abs(x-a[i])+abs(y-a[j])+mp[i][j]));
			ans  = ((ans+(res*k)%mod)%mod);
		}
		printf("%lld\n",ans);
	}
    return 0;
}


































评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值