二分图带权匹配费用流模型建立

本文详细介绍了如何使用最小(大)费用最大流的方法求解最小(大)权匹配问题,包括构建辅助节点和边的策略,并通过实例说明了求解过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

[求最小(大)权匹配的费用流建模方法]

求最小(大)权匹配,可以用最小(大)费用最大流的方法。和二分图最大匹配的构图方法类似,添加附加源S和附加汇T,从S向二分图X集合中每个顶点连接一条权值为0,容量为1的有向边,从Y集合中每个顶点向T也连接一条权值为0,容量为1的有向边。然后把原有的边变成容量为1,权值不变的有向边。求从S到T的最小(大)费用最大流,就能求得最小(大)权匹配。

上述建模求最大权匹配的方法求得的一定是最佳匹配(如果存在完备匹配),因为S到X集合每条边全部满流。如下图所示,最小费用最大流为2。



要求最大权匹配(不一定完备匹配)。如下图,只需再引入一个顶点A,从X集合的每个顶点向A连接一条容量为1,权值为0的边,然后再由A向T连接一条权值为0,容量不小于|X|的边,求最大费用最大流,这时是100。



最小权匹配也类似,不过新加的边权要为一个极大值,大于所有已有边权值。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值