Longest Consecutive Sequence

本文介绍了一种求解无序整数数组中最大连续序列长度的算法,并提供了基于哈希表的具体实现方案,确保时间复杂度为O(n)。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述

2.1.6 Longest Consecutive Sequence
Given an unsorted array of integers, find the length of the longest consecutive elements sequence.
For example, Given [100, 4, 200, 1, 3, 2], The longest consecutive elements sequence is [1,
2, 3, 4]. Return its length: 4.
Your algorithm should run in O(n) complexity

题目分析

解题思路

无序数列中最长连续的数 长度,时间复杂度要求为O(n)
1、先排序 时间复杂度为 O(nlogn) 这个时间复杂度是怎么的出来的
2、使用哈希表 unordered_map<int, bool> used 记录每个元素是否使用,对没元素扩散查找,直到不连续记录下长度

代码实现

/*
date:2018/3/06 16:59
*/

#include <vector>
#include <unordered_map>
#include <algorithm>
using std::unordered_map;
using std::vector;
using std::max;
int arr[] = {1,2,3,8,4,10,6,7};
int arr_len = sizeof(arr)/sizeof(int);

vector<int> nums(arr,arr+arr_len);

int longestConsecutive(vector<int>&nums)
{
    int len = 0;
    int result = 0;
    //初始化哈希表
    unordered_map<int,bool> used;
    for(int i=0; i<nums.size(); i++)
        used[nums[i]] = false;
    //进行遍历
    for (int i=0; i<nums.size(); i++)
    {
        int value = nums[i];
        unordered_map<int,bool>::iterator it = used.find(value);
        while (it!=used.end() && !it->second )
        {
            len++;
            value++;
            it->second = true;
            it = used.find(value);
        }
        printf("begin [%d] to",len ? value-1 : value);
        value = nums[i]-1;
        it = used.find(value);
        while (it!=used.end() && !it->second )
        {
            len++;
            value--;
            it->second = true;
            it = used.find(value);
        }
        printf("end [%d],len[%d]\n",value+1,len);
        result = max(len,result);
        len = 0;
    }
    return result;
}

参考

https://www.cnblogs.com/ranjiewen/p/5328137.html //map hashmap unordered_map
https://www.cnblogs.com/NeilZhang/p/5724996.html
http://www.cplusplus.com/reference/unordered_map/unordered_map/find/

<think>好的,我现在需要帮助用户理解他们提供的C++代码段。首先,我会仔细阅读代码,看看它做了什么。 代码中有两个部分:首先声明了一个`unordered_set<int> num_set;`,然后遍历`nums`中的每个元素,将它们插入到`num_set`中。作者是力扣官方题解,可能这段代码是用于解决最长连续序列问题的。 用户可能想知道这段代码的作用以及它在特定问题中的用途。需要解释`unordered_set`的特点,比如快速查找、去重等。然后循环部分,将`nums`中的每个元素插入到集合中,这样可以去重,并为后续的查找操作做准备。 接下来要考虑用户可能的背景。可能是刚开始学习C++或者算法,对STL容器不熟悉。需要用简单易懂的语言解释,避免使用过多术语,但又要准确。比如,解释`unordered_set`是基于哈希表实现的,插入和查找的平均时间复杂度是O(1),这样在处理大量数据时效率高。 然后,这段代码可能出现在最长连续序列的问题中,比如LeetCode 128题。那个问题需要找到一个未排序数组中数字连续的最长序列的长度。通常的解法是先利用集合去重,然后遍历每个数字,检查是否是序列的起点,再逐次查找下一个数字是否存在。因此,这个`num_set`的创建是为了后续的查找操作,提高效率。 用户可能没有说明具体的应用场景,但根据代码来源,可以推测是用于这个问题。需要指出这段代码的作用是预处理数据,去重并存储在哈希集合中,以便快速查询。 另外,需要注意代码中的细节,比如循环中使用`const int& num`来避免不必要的拷贝,提高效率。虽然对于基本类型int来说,用不用引用区别不大,但这也是一种良好的编程习惯。 最后,要确保解释清晰,结构合理,先介绍代码的结构,再解释每个部分的作用,最后联系到实际问题中的应用,帮助用户全面理解。</think>这段代码的作用是**将数组 `nums` 中的所有元素存入一个哈希集合(`unordered_set`)中,实现去重和快速查找**。以下是逐行解析: --- ### 代码解析 ```cpp unordered_set<int> num_set; // 1. 声明一个无序集合(基于哈希表实现) for (const int& num : nums) { // 2. 遍历数组 nums 中的每个元素 num num_set.insert(num); // 3. 将 num 插入集合(自动去重) } ``` --- ### 关键点说明 1. **`unordered_set` 的特性**: - **去重**:若 `nums` 中有重复元素,集合中只会保留一个。 - **快速查找**:基于哈希表实现,插入和查找的平均时间复杂度为 $O(1)$。 - **无序存储**:元素不按顺序存储(与 `set` 不同)。 2. **循环的作用**: - 将数组 `nums` 的每个元素存入集合,为后续操作(如“检查某个值是否存在”)做准备。 --- ### 典型应用场景(如 LeetCode 128. 最长连续序列) 在这类问题中,这段代码常用于: 1. **去重**:避免重复元素干扰连续序列的计算。 2. **快速查询**:后续通过 `num_set.count(num+1)` 等操作,快速判断某个值是否存在,从而统计连续序列长度。 --- ### 代码对比:为什么用 `unordered_set` 而不是其他容器? | 容器 | 特点 | |------------------|---------------------------------------------------------------------| | `vector` | 不去重,查找效率低($O(n)$) | | `set` | 自动排序,但插入和查找效率为 $O(\log n)$ | | `unordered_set` | 无序,但插入和查找效率最高($O(1)$),**最适合当前需求** | --- ### 示例说明 假设输入 `nums = [3, 1, 2, 2, 4]`,执行代码后: - `num_set` 中的内容为 `{1, 2, 3, 4}`(去重且无序存储)。 - 后续可通过 `num_set.find(3)` 快速判断数字 `3` 是否存在。 --- ### 总结 这段代码是**预处理数据的常见操作**,核心目的是通过哈希集合实现: 1. 去重 2. 为后续高频查找提供 $O(1)$ 时间复杂度的支持
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值