题目链接点这儿
对于普通的求解 的,我们可以利用扩展欧几里得求得两数c和d满足
,若b是gcd(a,p)的倍数,那么有解,否则无解。
而对于多元的,我们知道对任意a, b来说ax+by永远是gcd(x,y)的倍数,所以我们可以用k*gcd(x,y)代替ax+by,然后对任意的k和z来说k*gcd(x,y) + cz又永远是gcd(gcd(x,y), z)的倍数。从而我们可以不断减少变元的数量。最后化成普通的形式。然后再一步一步倒回来得到所要的系数。
代码如下
#include <bits/stdc++.h>
#define up(i, lower, upper) for(int i = lower; i < upper; i++)
#define down(i, lower, upper) for(int i = upper-1; i >= lower; i--)
using namespace std;
typedef pair<int, int> pii;
typedef pair<double, double> pdd;
typedef vector<int> vi;
typedef vector<pii> vpii;
typedef long long ll;
typedef unsigned long long ull;
const double pi = acos(-1.0);
const double eps = 1.0e-9;
template<class T>
inline bool read(T &n){
T x = 0, tmp = 1; char c = getchar();
while((c < '0' || c > '9') && c != '-' && c != EOF) c = getchar();
if(c == EOF) return false;
if(c == '-') c = getchar(), tmp = -1;
while(c >= '0' && c <= '9') x *= 10, x += (c - '0'),c = getchar();
n = x*tmp;
return true;
}
template <class T>
inline void write(T n) {
if(n < 0) {
putchar('-');
n = -n;
}
int len = 0,data[20];
while(n) {
data[len++] = n%10;
n /= 10;
}
if(!len) data[len++] = 0;
while(len--) putchar(data[len]+48);
}
///---------------------------------------------------------
int exgcd(int a, int b, int &x, int &y) {
if(b == 0) {
x = 1, y = 0;
return a;
} else {
int r = exgcd(b, a%b, y, x);
y -= x*(a/b);
return r;
}
}
int a[101], x[101], y[101];
int main() {
int n, p, b;
read(n), read(p), read(b);
up(i, 0, n) {
read(a[i]);
a[i]%=p;
}
int gcd_fn = a[0];
up(i, 1, n) gcd_fn = exgcd(gcd_fn, a[i], y[i], x[i]);
gcd_fn = exgcd(gcd_fn, p, y[n], x[n]);
if(b%gcd_fn != 0) { puts("NO"); return 0; }
puts("YES");
int mul = b/gcd_fn;
x[0] = 1;
down(i, 0, n) {
while(y[i+1] < 0) y[i+1] += p;
mul = mul*y[i+1]%p;
while(x[i] < 0) x[i] += p;
x[i] = x[i]*mul%p;
}
up(i, 0, n) printf("%d ", x[i]);
return 0;
}