希尔排序

原文链接:http://blog.youkuaiyun.com/morewindows/article/details/6668714
简单

void ShellSort(int *a,int n){
    int i,j,k;
    int temp;
    int gap;

    for(gap = n / 2;gap > 0;gap /= 2)
        for(i = 0;i < gap;i++)
            for(j = i + gap;j < n;j += gap)
                if(a[j - gap] > a[j])
                    {
                        temp = a[j];
                        for(k = j - gap;k >= 0 && a[k] > temp; k -= gap)
                        a[k + gap] = a[k];
                        a[k+ gap] = temp;
                    }

}

进阶

void ShellSort2(int *a,int n){
    int i,j,k;
    int gap;

    for(gap = n / 2;gap > 0;gap /= 2)
        for(i = 0;i < gap;i++)
            for(j = i + gap;j < n;j += gap)
                for(k = j - gap;k >= 0 && a[k + gap] > a[k];k -= gap)
                    a[k + gap] = a[k];
}
基于html+python+Apriori 算法、SVD(奇异值分解)的电影推荐算法+源码+项目文档+算法解析+数据集,适合毕业设计、课程设计、项目开发。项目源码已经过严格测试,可以放心参考并在此基础上延申使用,详情见md文档 电影推荐算法:Apriori 算法、SVD(奇异值分解)推荐算法 电影、用户可视化 电影、用户管理 数据统计 SVD 推荐 根据电影打分进行推荐 使用 svd 模型计算用户对未评分的电影打分,返回前 n 个打分最高的电影作为推荐结果 n = 30 for now 使用相似电影进行推荐 根据用户最喜欢的前 K 部电影,分别计算这 K 部电影的相似电影 n 部,返回 K*n 部电影进行推荐 K = 10 and n = 5 for now 根据相似用户进行推荐 获取相似用户 K 个,分别取这 K 个用户的最喜爱电影 n 部,返回 K*n 部电影进行推荐 K = 10 and n = 5 for now Redis 使用 Redis 做页面访问次数统计 缓存相似电影 在使用相似电影推荐的方式时,每次请求大概需要 6.6s(需要遍历计算与所有电影的相似度)。 将相似电影存储至 redis 中(仅存储 movie_id,拿到 movie_id 后还是从 mysql 中获取电影详细信息), 时间缩短至:93ms。 十部电影,每部存 top 5 similar movie 登录了 1-6 user并使用了推荐系统,redis 中新增了 50 部电影的 similar movie,也就是说,系统只为 6 为用户计算了共 60 部电影的相似度,其中就有10 部重复电影。 热点电影重复度还是比较高的
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值