Image saliency_detection / segmentation论文

本文提出了一种新的显著性检测方法,包括一个可自适应加权特征图的递归定位网络和一个用于恢复边界细节的边界细化网络。递归定位网络通过预测的空间响应图动态调整特征权重,而边界细化网络则通过学习中心像素与其邻居间的关系来精炼显著性图。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Detect Globally, Refine Locally: A Novel Approach to Saliency Detection

在这里插入图片描述

Research Background
  1. Existing saliency detection approaches usually focus on how to effectively combine hierarchical features so as to encode rich semantic representation, then capture distinctive objectness and detailed boundaries simultaneously. However, it is often overlooked that directly apply concatenation or element-wise operation to different feature maps is sub-optimal, because some maps are too clustered which may introduce misleading information.
Motivation and Proposed Approach
  1. This work first proposes a Recurrent Localization Network, which consists of a contextual weighting module (CWM) and a recurrent module (RM). CWM can adaptively weight the feature maps for each position based on a predicted spatial response map. The recurrent module gradually refine the predicted saliency map over ‘time’.
  2. This work adopt a Boundary Refinement Network (BRN) to recover the detailed boundary information. BRN can predict a n×nn\times nn×n coefficient map for each pixel which indicates the relationship between the center point and its n×nn\times nn×n neighbors.
  3. In summary, the contextual weighting module is organized as an inception-like module with 3x3, 5x5 and 7x7 convolutional kernal, followed by a concatnation and convolution operation. The CWM module generates a response map, indicating the importance for each spatial position.
  4. For the feature map of each block, the recurrent module simultaneously utilize both the current feed-forward input and the previous state of the same block.
  5. The boundary refinement network takes current image and its saliency map as input, aiming to learn the propagation coefficients with several convolutional layers. The propagation coefficients are then used to refine the saliency map.
疑惑:
  1. BRN 与spatial propagation network类似?
  2. 在globally detect模块中, 包含recurrent refinement 模块,同时又采用BRN修正,意义是什么?
  3. 当前工作,念神CVPR 2018,以及ICCV 2017的embedding,如何做到为每个点学习一个attention map
  4. recurrent module 的time step只是设置为2,帮助大吗?这个思路计算量翻倍,但效果应该有提升
  5. 在修正部分,输入图像的分辨率更大,提升最终效果
评价: # def fuse_with_aem(self, saliency_map, aem_map): # """ # 将显著图与AEM音频能量图进行自适应融合 # Args: # saliency_map: 显著图 tensor [B, H, W] 或 numpy array [H, W] # aem_map: AEM音频能量图 tensor [B, H', W'] 或 numpy array [H', W'] # Returns: # 融合后的显著图 # """ # # 转换为tensor并确保在同一设备上 # if not torch.is_tensor(saliency_map): # saliency_map = torch.from_numpy(saliency_map).float() # if not torch.is_tensor(aem_map): # aem_map = torch.from_numpy(aem_map).float() # # if saliency_map.dim() == 2: # saliency_map = saliency_map.unsqueeze(0) # if aem_map.dim() == 2: # aem_map = aem_map.unsqueeze(0) # # saliency_map = saliency_map.to(self.backbone.device) # aem_map = aem_map.to(self.backbone.device) # # # 值域归一化到[0,1] # saliency_map = saliency_map / 255.0 # aem_map = aem_map / aem_map.max() # # # 将AEM图调整到与显著图相同大小 # aem_map = F.interpolate( # aem_map.unsqueeze(1), # size=saliency_map.shape[-2:], # mode='bilinear', # align_corners=True # ).squeeze(1) # # # 计算显著图和AEM的空间相关性 # sal_norm = (saliency_map - saliency_map.mean()) / saliency_map.std() # aem_norm = (aem_map - aem_map.mean()) / aem_map.std() # correlation = F.cosine_similarity( # sal_norm.view(sal_norm.size(0), -1), # aem_norm.view(aem_norm.size(0), -1), # dim=1 # ).view(-1, 1, 1) # # # 自适应融合权重 # alpha = torch.sigmoid(correlation) # 基础显著图权重 # beta = 1 - alpha # AEM增强权重 # # # 融合策略: # # 1. 保持基础显著性 # # 2. 在AEM高能量区域增强显著性 # # 3. 使用相关性调整增强程度 # fused_map = (alpha * saliency_map + # beta * (saliency_map * (1 + aem_map))) # # # 确保输出值域在[0,1]之间 # fused_map = torch.clamp(fused_map, 0, 1) # # return fused_map“
最新发布
08-15
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值