《Deep learning with non-medical training used for chest pathology identification》论文解读

本文探讨了使用非医学图像预训练CNN网络,在少量医学图像上进行胸片病理检测的有效性。通过ImageNet预训练的CNN提取特征并结合其他特征输入至分类器,实现了对右肺胸腔积液、心脏肥大等病症的有效识别。
该篇论文的主旨:
利用CNN网络在非医学图像数据集上进行训练,然后用93张医学图像进行测试,并利用AUC的面积进行衡量右肺胸腔积液检测,心脏肥大和健康和有病的图像分类问题。作者提出这是史无前例的利用非医学图像来训练,但是模型在医学图像上依然通用的方法。
验证深度学习CNNs方法在胸片图像数据上的病理检测的效果。

在训练ImageNet图像分类的网络结构图


以ImageNet中的数据集作为输入,分为1000个种类,设计的CNN深度网络结构模式。





用ImageNet预训练生成的网络CNN,然后用PicoDes(包括各种流行的底层特征,SIFR,GIST,PHOG,SSIM)来提取图像特征,将提取的图像特征标准化后输入到线性的SVM分类器中得到是不是有病的检测结果,然后将上次提取的图像特征和Gist,Bow以及LBP等特征混合后输入到CNN网络中得到最后的结果。


参考文献:

Yaniv Bar, Idit Diamant, Lior Wolf , Hayit Greenspan. Deep learning with non-medical training used for chest pathology identification


以上仅代表我个人理解,如有错误,欢迎指正讨论!



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值