pooling和旋转不变性

本文探讨了Pooling在深度学习中的应用,特别是在构建具有不变性的特征方面的重要性。通过使用连续区域作为池化区域并仅从相同的隐藏单元生成特征,可以实现对图像的小幅度平移的不变性,这对于许多任务,如物体检测和音频识别尤为重要。

Pooling for Invariance

If one chooses the pooling regions to be contiguous areas in the image and only pools features generated from the same (replicated) hidden units. Then, these pooling units will then be translation invariant. This means that the same (pooled) feature will be active even when the image undergoes (small) translations. Translation-invariant features are often desirable; in many tasks (e.g., object detection, audio recognition), the label of the example (image) is the same even when the image is translated. For example, if you were to take an MNIST digit and translate it left or right, you would want your classifier to still accurately classify it as the same digit regardless of its final position.


原文地址:http://wiki.suanfazu.com/w/Pooling

          http://www.deeplearning.net/tutorial/lenet.html#lenet

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值