Pytorch Conv2d

本文详细介绍了卷积神经网络中卷积层的各项参数及其作用,包括输入和输出通道数、卷积核大小、步长、填充等,并解释了这些参数如何影响卷积操作。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

参数:
Args:
in_channels (int): Number of channels in the input image
out_channels (int): Number of channels produced by the convolution
kernel_size (int or tuple): Size of the convolving kernel
stride (int or tuple, optional): Stride of the convolution. Default: 1
padding (int or tuple, optional): Zero-padding added to both sides of the input. Default: 0
dilation (int or tuple, optional): Spacing between kernel elements. Default: 1
groups (int, optional): Number of blocked connections from input channels to output channels. Default: 1
bias (bool, optional): If True, adds a learnable bias to the output. Default: True

in_channels (int): 输入通道
out_channels (int): 输出通过
kernel_size (int or tuple): 卷积核(滤波器)的大小
stride (int or tuple, optional): 步长,可以是整数,也可以是tuple
padding (int or tuple, optional): 周围补零Default: 0
dilation (int or tuple, optional): Spacing between kernel elements. Default: 1(不懂)
groups (int, optional): Number of blocked connections from input channels to output channels. Default: 1(不懂)
bias (bool, optional): If True, adds a learnable bias to the output. Default: True(偏差)

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值