hdu 1080 Human Gene Functions

本文介绍了一种最长公共子序列(LCS)的变种算法实现,通过动态规划方法求解两个字符串之间的最大匹配得分。文章详细展示了如何利用预定义的匹配得分矩阵来更新状态转移方程,并给出完整的C语言实现代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目点我
LCS变种

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define inf 0x3f3f3f3f
#define len 105
char a[len], b[len];
int dp[len][len], mat[len][len];

int Max(int a, int b){
    return a > b ? a : b;
}
int main(){
    int T, i, j;
    mat['A']['A'] = mat['C']['C'] = mat['G']['G'] = mat['T']['T'] = 5;
    mat['A']['C'] = mat['C']['A'] = mat['A']['T'] = mat['T']['A'] = mat['-']['T'] = -1;
    mat['A']['G'] = mat['G']['A'] = mat['C']['T'] = mat['T']['C'] = mat['G']['T'] = mat['T']['G'] = mat['-']['G'] = -2;
    mat['-']['A'] = mat['C']['G'] = mat['G']['C'] = -3;
    mat['-']['C'] = -4;
    scanf("%d", &T);
    int len1, len2;
    while(T--){
        scanf("%d%s%d%s", &len1, a, &len2, b);
        dp[0][0] = 0;
        for(i = 1; i <= len1; i++)
            dp[i][0] = dp[i-1][0] + mat['-'][a[i-1]];
        for(j = 1; j <= len2; j++)
            dp[0][j] = dp[0][j-1] + mat['-'][b[j-1]];
        for(i = 1; i <= len1; i++){
            for(j = 1; j <= len2; j++){
                dp[i][j] = Max(dp[i-1][j-1] + mat[a[i-1]][b[j-1]], Max(dp[i-1][j] + mat['-'][a[i-1]], dp[i][j-1] + mat['-'][b[j-1]]));
            }
        }
        printf("%d\n", dp[len1][len2]);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值