/**
* Median of Two Sorted Arrays
* 两个排序数组的中位数
*/
#include <stdio.h>
// Classical binary search algorithm, but slightly different
// if cannot find the key, return the position where can insert the key
int binarySearch(int A[], int low, int high, int key){
while(low<=high){
int mid = low + (high - low)/2;
if (key == A[mid]) return mid;
if (key > A[mid]){
low = mid + 1;
}else {
high = mid -1;
}
}
return low;
}
/tes:
// I feel the following methods is quite complicated, it should have a better high clear and readable solution
double findMedianSortedArrayHelper(int A[], int m, int B[], int n, int lowA, int highA, int lowB, int highB) {
// Take the A[middle], search its position in B array
int mid = lowA + (highA - lowA)/2;
int pos = binarySearch(B, lowB, highB, A[mid]);
int num = mid + pos;
// If the A[middle] in B is B's middle place, then we can have the result
if (num == (m+n)/2){
// If two arrays total length is odd, just simply return the A[mid]
// Why not return the B[pos] instead ?
// suppose A={ 1,3,5 } B={ 2,4 }, then mid=1, pos=1
// suppose A={ 3,5 } B={1,2,4}, then mid=0, pos=2
// suppose A={ 1,3,4,5 } B={2}, then mid=1, pos=1
// You can see, the `pos` is the place A[mid] can be inserted, so return A[mid]
if ((m+n)%2==1){
return A[mid];
}
// If tow arrys total length is even, then we have to find the next one.
int next;
// If both `mid` and `pos` are not the first postion.
// Then, find max(A[mid-1], B[pos-1]).
// Because the `mid` is the second middle number, we need to find the first middle number
// Be careful about the edge case
if (mid>0 && pos>0){
next = A[mid-1]>B[pos-1] ? A[mid-1] : B[pos-1];
}else if(pos>0){
next = B[pos-1];
}else if(mid>0){
next = A[mid-1];
}
return (A[mid] + next)/2.0;
}
// if A[mid] is in the left middle place of the whole two arrays
//
// A(len=16) B(len=10)
// [................] [...........]
// ^ ^
// mid=7 pos=1
//
// move the `low` pointer to the "middle" position, do next iteration.
if (num < (m+n)/2){
lowA = mid + 1;
lowB = pos;
if ( highA - lowA > highB - lowB ) {
return findMedianSortedArrayHelper(A, m, B, n, lowA, highA, lowB, highB);
}
return findMedianSortedArrayHelper(B, n, A, m, lowB, highB, lowA, highA);
}
// if A[mid] is in the right middle place of the whole two arrays
if (num > (m+n)/2) {
highA = mid - 1;
highB = pos-1;
if ( highA - lowA > highB - lowB ) {
return findMedianSortedArrayHelper(A, m, B, n, lowA, highA, lowB, highB);
}
return findMedianSortedArrayHelper(B, n, A, m, lowB, highB, lowA, highA);
}
}
double findMedianSortedArrays(int A[], int m, int B[], int n) {
//checking the edge cases
if ( m==0 && n==0 ) return 0.0;
//if the length of array is odd, return the middle one
//if the length of array is even, return the average of the middle two numbers
if ( m==0 ) return n%2==1 ? B[n/2] : (B[n/2-1] + B[n/2])/2.0;
if ( n==0 ) return m%2==1 ? A[m/2] : (A[m/2-1] + A[m/2])/2.0;
//let the longer array be A, and the shoter array be B
if ( m > n ){
return findMedianSortedArrayHelper(A, m, B, n, 0, m-1, 0, n-1);
}
return findMedianSortedArrayHelper(B, n, A, m, 0, n-1, 0, m-1);
}
int main()
{
int r1[] = {1};
int r2[] = {2};
int n1 = sizeof(r1)/sizeof(r1[0]);
int n2 = sizeof(r2)/sizeof(r2[0]);
printf("Median is 1.5 = %f\n", findMedianSortedArrays(r1, n1, r2, n2));
int ar1[] = {1, 12, 15, 26, 38};
int ar2[] = {2, 13, 17, 30, 45, 50};
n1 = sizeof(ar1)/sizeof(ar1[0]);
n2 = sizeof(ar2)/sizeof(ar2[0]);
printf("Median is 17 = %f\n", findMedianSortedArrays(ar1, n1, ar2, n2));
int ar11[] = {1, 12, 15, 26, 38};
int ar21[] = {2, 13, 17, 30, 45 };
n1 = sizeof(ar11)/sizeof(ar11[0]);
n2 = sizeof(ar21)/sizeof(ar21[0]);
printf("Median is 16 = %f\n", findMedianSortedArrays(ar11, n1, ar21, n2));
int a1[] = {1, 2, 5, 6, 8 };
int a2[] = {13, 17, 30, 45, 50};
n1 = sizeof(a1)/sizeof(a1[0]);
n2 = sizeof(a2)/sizeof(a2[0]);
printf("Median is 10.5 = %f\n", findMedianSortedArrays(a1, n1, a2, n2));
int a10[] = {1, 2, 5, 6, 8, 9, 10 };
int a20[] = {13, 17, 30, 45, 50};
n1 = sizeof(a10)/sizeof(a10[0]);
n2 = sizeof(a20)/sizeof(a20[0]);
printf("Median is 9.5 = %f\n", findMedianSortedArrays(a10, n1, a20, n2));
int a11[] = {1, 2, 5, 6, 8, 9 };
int a21[] = {13, 17, 30, 45, 50};
n1 = sizeof(a11)/sizeof(a11[0]);
n2 = sizeof(a21)/sizeof(a21[0]);
printf("Median is 9 = %f\n", findMedianSortedArrays(a11, n1, a21, n2));
int a12[] = {1, 2, 5, 6, 8 };
int a22[] = {11, 13, 17, 30, 45, 50};
n1 = sizeof(a12)/sizeof(a12[0]);
n2 = sizeof(a22)/sizeof(a22[0]);
printf("Median is 11 = %f\n", findMedianSortedArrays(a12, n1, a22, n2));
int b1[] = {1 };
int b2[] = {2,3,4};
n1 = sizeof(b1)/sizeof(b1[0]);
n2 = sizeof(b2)/sizeof(b2[0]);
printf("Median is 2.5 = %f\n", findMedianSortedArrays(b1, n1, b2, n2));
return 0;
}