void CirclesGridClusterFinder::hierarchicalClustering(const vector<Point2f> points, const Size &patternSz, vector<Point2f> &patternPoints)
//对点层次聚类排序
{
int j,n = (int)points.size();
size_t pn = static_cast<size_t>(parternSz.area());
patternPoints.clear();
if(pn >= point.size())
{
if(pn == points.size(0)
patternPoints = points;
return;
}
Mat dists(n, n, CV_32FC!, Scalar(0));
Mat distsMask(dists.size(), CV_8UC!, Scalar(0));
for(int i=0; i<n; i++)
{
for(j = i+1; j<n; j++)
{
dists.at<float>(i,j) = (float)norm(points[i] - points[j]);
distsMask.at<uchar>(i,j) = 255;
distsMask.at<uchar>(j,i) = 255;
dists.at<float>(i,j) = dists.at<float>(i,j);
}
}
vector<std::list<size_t>>clusters(points.size());
for (size_t i=0; i<poimts.size(); i++)
{
cluster[i].push_back(i);
}
int patternClusterIdx = 0;
while (clusters[patternClusterIdx].size() <pn)
{
Point minLoc;
minMaxLoc(dists, 0, 0, &minLoc, 0, distMask);
int minIdx = std::min(minLoc.x, misLoc.y);
int maxIdx = std::max(minLoc.x, misLoc.y);
distsMask.row(maxIdx).setTo(0);
distsMask.col(maxIdx).setTo(0);
Mat tmpRow = dists.row(minIdx);
Mat tmpCol = dists.col(minIdx);
cv::min(dists.row(minLoc.x), dists.row(minLoc.y), tmpRow);
tmpRow.copyTo(tmpCol);
clusters[minIdx].splice(clusters[minIdx].end(), clusters[maxIdx]);
patternClusterIdx = minIdx;
}
if(clusters[patternClusterIdx].size() != static_cast<size_t>(patternSz.area()))
return;
patternPoints.reserve(clusters[patternClusterIdx].size());
for(std::list<size_t>::iterator it = cluater[patternCluaterIdx].begin(); it != clusters[patternClusterIdx].end(); it++)
{
petternPoints.push_back(points[*it]);
}
}