hdu 3998 dp+最大流

本文介绍了一种求解最长上升子序列及其数量的方法,首先使用动态规划确定最长子序列的长度,然后通过构建图模型并运用最大流算法计算满足该长度的子序列的数量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Sequence

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1164    Accepted Submission(s): 421


Problem Description
There is a sequence X (i.e. x[1], x[2], ..., x[n]). We define increasing subsequence of X
as x[i1], x[i2],...,x[ik], which satisfies follow conditions:
1) x[i1] < x[i2],...,<x[ik];
2) 1<=i1 < i2,...,<ik<=n

As an excellent program designer, you must know how to find the maximum length of the
increasing sequense, which is defined as s. Now, the next question is how many increasing
subsequence with s-length can you find out from the sequence X.

For example, in one case, if s = 3, and you can find out 2 such subsequence A and B from X.
1) A = a1, a2, a3. B = b1, b2, b3.
2) Each ai or bj(i,j = 1,2,3) can only be chose once at most.

Now, the question is:
1) Find the maximum length of increasing subsequence of X(i.e. s).
2) Find the number of increasing subsequence with s-length under conditions described (i.e. num).
 

Input
The input file have many cases. Each case will give a integer number n.The next line will
have n numbers.
 

Output
The output have two line. The first line is s and second line is num.
 

Sample Input
4 3 6 2 5
 

Sample Output
2 2

题意:求最长上升子序列的长度以及个数。

解题思路:先求最长上升子序列,

然后添加一个源点,一个汇点,对每个点拆点,假如dp[i]=1那么从源点向i连流量为1,的边,如果dp[i]=k从i+n向汇点连流量为1的边,如果i<j,且dp[i]+1=dp[j],则连边,

然后最大流。

代码:

#include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <math.h>
#include <stdlib.h>
#include <time.h>
using namespace std;
#define inf 0x3f3f3f3f
const int maxn=10000;
int head[maxn],tol,dep[maxn],n;
struct node
{
       int next,to,from,cap;
}edge[300000];
void add(int u,int v,int cap)
{
       edge[tol].from=u;
       edge[tol].to=v;
       edge[tol].cap=cap;
       edge[tol].next=head[u];
       head[u]=tol++;

       edge[tol].from=v;
       edge[tol].to=u;
       edge[tol].cap=0;
       edge[tol].next=head[v];
       head[v]=tol++;
}
int bfs(int s,int t)
{
       int que[maxn],front=0,rear=0;
       memset(dep,-1,sizeof(dep));
       dep[s]=0;que[rear++]=s;
       while(front!=rear)
       {
              int u=que[front++];front%=maxn;
              for(int i=head[u];i!=-1;i=edge[i].next)
              {
                     int v=edge[i].to;
                     if(edge[i].cap>0&&dep[v]==-1)
                     {
                            dep[v]=dep[u]+1;
                            que[rear++]=v;
                            rear%=maxn;
                            if(v==t)return 1;
                     }
              }
       }
       return 0;
}
int dinic(int s,int t)
{
       int i,res=0,top;
       int Stack[maxn],cur[maxn];
       while(bfs(s,t))
       {
              memcpy(cur,head,sizeof(head));
              int u=s;top=0;
              while(1)
              {
                     if(u==t)
                     {
                            int min=inf,loc;
                            for(int i=0;i<top;i++)
                            if(min>edge[Stack[i]].cap)
                            {
                                   min=edge[Stack[i]].cap;
                                   loc=i;
                            }
                            for(int i=0;i<top;i++)
                            {
                                   edge[Stack[i]].cap-=min;
                                   edge[Stack[i]^1].cap+=min;
                            }
                            res+=min;
                            top=loc;
                            u=edge[Stack[top]].from;
                     }
                     for(int i=cur[u];i!=-1;cur[u]=i=edge[i].next)
                     if(edge[i].cap&&dep[u]+1==dep[edge[i].to])break;
                     if(cur[u]!=-1)
                     {
                            Stack[top++]=cur[u];
                            u=edge[cur[u]].to;
                     }
                     else
                     {
                            if(top==0)break;
                            dep[u]=-1;
                            u=edge[Stack[--top]].from;
                     }
              }
       }
       return res;
}

int a[30000],dp[30000];
int main()
{
    //  freopen("data.in","r",stdin);
     // freopen("data.out","w",stdout);
      int i,j,k,m,n;
      while(~scanf("%d",&n))
      {
	     memset(head,-1,sizeof(head));tol=0;    
	     for(i=1;i<=n;i++)scanf("%d",&a[i]);
	     int  ans=0;
	     for(i=1;i<=n;i++)
	     {
		    dp[i]=1;
		    for(j=1;j<i;j++)
			   if(a[j]<a[i]&&dp[j]>=dp[i])
				  dp[i]=dp[j]+1;
		    ans=max(ans,dp[i]);
	     }
	    // for(i=1;i<=n;i++)cout<<dp[i]<<" ";cout<<endl;
	   // cout<<ans<<endl;
	     for(i=1;i<=n;i++)
	     {
		    add(i,i+n,1);
		    if(dp[i]==1)add(0,i,1);
		     if(dp[i]==ans)add(i+n,2*n+1,1);
		    for(j=i+1;j<=n;j++)
			   if(dp[j]==dp[i]+1)
				  add(i+n,j,1);
	     }
	    // cout<<tol<<endl;
	     int flow=dinic(0,2*n+1);
	     //if(flow==0)flow++;
	     printf("%d\n%d\n",ans,flow);
      }
      return 0;
}




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值