线性表

本文详细介绍了线性表的三种存储结构:顺序存储、单链表存储和双向链表存储,并提供了C语言实现的示例代码。通过对比不同存储结构的特点和优缺点,帮助读者理解如何在实际应用中选择合适的线性表存储方式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

▶线性表的顺序存储结构

typedef struct {
	ElementType *element;			// 存储空间基地址
	int length;						// 当前长度
	int listsize;						// 当前分配的存储容量(ElementType)为单位)
}LinearList;

C语言部分实现如下:

#include <stdio.h>
#include <stdlib.h>

#define TRUE 1				//true
#define FALSE 0				//false
#define OK 1				//success
#define ERROR 0				//fail
#define INFEASIBLE -1		//infeasible  不可实行的
#define OVERFLOW -2			//overflow

#define LIST_INIT_SIZE 100  //线性表存储空间的初始分配量
#define LISTINCREMENT 10    //线性表存储空间的分配增量

typedef int ElementType;
typedef int Status;

typedef struct {
	ElementType *element;
	int length; 			//当前长度
	int listsize; 			//存储容量
}List;

static List list = {0};

Status initList(List *list);
Status destroy(List *list);
Status clear(List *list);
Status isEmpty(List *list);
Status length(List *list);
Status getElement(List *list, int i, ElementType *element);
Status compare(ElementType e1, ElementType e2);
Status locateElement(List *list, ElementType element, Status (* compare)(ElementType e1, ElementType e2));
Status prior(List *list, ElementType current, ElementType *prior);
Status next(List *list, ElementType current, ElementType *next);
Status insert(List *list, int i, ElementType element);
Status deleteElement(List *list, int i, ElementType *element);
Status add(List *list, ElementType element);

Status initList(List *list)
{
	//分配空间
	list->element = (ElementType *)malloc(LIST_INIT_SIZE * sizeof(ElementType));

	if (!list->element)
	{
		exit(OVERFLOW);
	}

	list->length = 0;
	list->listsize = LIST_INIT_SIZE;

	return OK;
}

Status destroy(List *list)
{
	if (list)
	{
		free(list->element);
		list->element = NULL;
	}

	return OK;
}

Status clear(List *list)
{
	int i = 0;

	if (list)
	{
		for (i = 0; i < list->length; i++)
		{
			list->element[i] = 0;
		}

		list->length = 0;
	}

	return OK;
}

Status isEmpty(List *list)
{
	if (0 == list->length)
	{
		return TRUE;
	}

	return FALSE;
}

Status length(List *list)
{
	if (list)
	{
		return list->length;
	}

	return 0;
}

Status getElement(List *list, int i, ElementType *element)
{
	if (!list)
	{
		return ERROR;
	}

	if (i < 0 || i >= list->length)
	{
		return ERROR;
	}

	*element = list->element[i];

	return OK;
}

Status compare(ElementType e1, ElementType e2)
{
	Status result = 2;

	if (e1 > e2)
	{
		result = 1;
	}
	else if (e1 == e2)
	{
		result = 0;
	}
	else
	{
		result = -1;
	}

	return result;
}

Status locateElement(List *list, ElementType element, Status (* compare)(ElementType e1, ElementType e2))
{
	ElementType i = 0;
	ElementType *p = NULL;

	p = list->element;

	while (i < list->length && (* compare)(*p++, element))
	{
		i++;
	}

	if (i < list->length)
	{
		return i;
	}
	else
	{
		return 0;
	}
}

Status prior(List *list, ElementType current, ElementType *prior)
{
	ElementType i = 0;

	i = locateElement(list, current, compare);

	if (i > 0)
	{
		*prior = list->element[i - 1];
	}

	return OK;
}

Status next(List *list, ElementType current, ElementType *next)
{
	ElementType i = 0;

	i = locateElement(list, current, compare);

	if (i != 0 && i < list->length - 1)
	{
		*next = list->element[i + 1];
	}

	return OK;
}

Status insert(List *list, int i, ElementType element)
{
	ElementType *newSpace = NULL;
	ElementType *insertPlace = NULL;
	ElementType *temp = NULL;

	if (i < 0 || i >= list->length)
	{
		return ERROR;
	}
	//长度大于容量,分配新空间
	if (list->length >= list->listsize)
	{
		newSpace = (ElementType *)realloc(list->element, (list->listsize + LISTINCREMENT) * sizeof(ElementType));

		if (!newSpace)
		{
			return ERROR;
		}

		list->element = newSpace;
		list->listsize += LISTINCREMENT;
	}

	insertPlace = &(list->element[i - 1]);

	for (temp = &(list->element[list->length - 1]); temp >= insertPlace; temp--)
	{
		*(temp + 1) = *temp;
	}

	*insertPlace = element;
	list->length++;

	return OK;
}

Status deleteElement(List *list, int i, ElementType *element)
{
	ElementType *p = NULL;
	ElementType *temp = NULL;

	if (!list)
	{
		return ERROR;
	}

	if (i < 0 || i > list->length - 1)
	{
		return ERROR;
	}

	p = &list->element[i - 1];
	element = p;

	temp = list->element + list->length - 1;

	for (++p; p <= temp; ++p)
	{
		*(p - 1) = *p;
	}

	list->length--;

	return OK;
}

Status add(List *list, ElementType element)
{
	if (!list)
	{
		return ERROR;
	}

	list->element[list->length] = element;
	list->length++;

	return OK;
}

int main()
{
	int i = 0;
	int element = 0;

	initList(&list);

	for (i = 0; i < 100; i++)
	{
		add(&list, i);
	}

//	insert(&list, 3, 100);

	printf("%d\n", isEmpty(&list));
	deleteElement(&list, 54, &element);
	printf("%d\n", element);

	for (i = 0; i < list.length; i++)
	{
		printf("%d, ", list.element[i]);
	}

	getchar();

	return 0;
}


▶线性表的单链表存储结构

typedef struct Node {
	ElementType data;				// 数据
	struct Node *next;				// 下一个节点
}LinkedList;


C语言部分实现如下:

#include <stdio.h>
#include <stdlib.h>

#define TRUE 1				//true
#define FALSE 0				//false
#define OK 1				//success
#define ERROR 0				//fail

typedef int ElementType;
typedef int Status;

typedef struct Node {
	ElementType element;
	struct Node *next;
}Node, *LinkedList;

LinkedList linkedList = {0};

Status init(LinkedList linkedList);
Status createHead(LinkedList *linkedList, int n);
Status createTail(LinkedList *linkedList, int n);
Status getElement(LinkedList linkedList, int i, ElementType *element);
Status insert(LinkedList linkedList, int i, ElementType element);
Status delete(LinkedList linkedList, int i, ElementType *element);

Status init(LinkedList linkedList)
{
	linkedList = (Node *)malloc(sizeof(Node));

	if (!linkedList)
	{
		return ERROR;
	}

	linkedList->next = NULL;

	return OK;
}

Status createHead(LinkedList *linkedList, int n)
{
	int i = 0;
	LinkedList point = NULL;
	*linkedList = (LinkedList)malloc(sizeof(Node));
	(*linkedList)->next = NULL;

	for (i = 0; i < n; i++)
	{
		point = (LinkedList)malloc(sizeof(Node));
		point->element = i;
		point->next = (*linkedList)->next;
		(*linkedList)->next = point;
	}

	return OK;
}

Status createTail(LinkedList *linkedList, int n)
{
	int i = 0;
	LinkedList point = NULL;
	LinkedList temp = NULL;
	*linkedList = (LinkedList)malloc(sizeof(Node));
	(*linkedList)->next = NULL;

	temp = *linkedList;

	for (i = 0; i < n; i++)
	{
		point = (LinkedList)malloc(sizeof(Node));
		point->element = i;
		temp->next = point;
		temp = point;
	}

	return OK;
}

Status getElement(LinkedList linkedList, int i, ElementType *element)
{
	Node *point = NULL;
	int j = 0;

	point = linkedList;

	while (point && j < i)
	{
		point = point->next;
		j++;
	}

	if (!point || j > i)
	{
		return ERROR;
	}

	*element = point->element;

	return OK;
}

Status insert(LinkedList linkedList, int i, ElementType element)
{
	LinkedList point = NULL;
	LinkedList insert = NULL;
	int j = 0;

	point = linkedList;

	while (point && j < i)
	{
		point = point->next;
		++j;
	}

	if (!point || j > i)
	{
		return ERROR;
	}

	insert = (LinkedList)malloc(sizeof(Node));
	insert->element = element;
	insert->next = point->next;
	point->next = insert;

	return OK;
}

Status delete(LinkedList linkedList, int i, ElementType *element)
{
	LinkedList point = NULL;
	LinkedList temp = NULL;
	int j = 0;

	point = linkedList;

	while (point && j < i)
	{
		point = point->next;
		++j;
	}

	if (!(point->next) || j > i)
	{
		return ERROR;
	}

	temp = point->next;
	point->next = temp->next;

	free(temp);

	return OK;
}

int main()
{
	int i = 0;
	LinkedList temp = NULL;
	ElementType element = 0;

	createTail(&linkedList, 10);
	temp = linkedList->next;

	insert(linkedList, 4, 12);
	delete(linkedList, 4, &element);

	for (i = 0; i < 10; i++)
	{
		printf("%d, ", temp->element);
		temp = temp->next;
	}

	getElement(linkedList, 4, &element);
	printf("\n%d", element);

//	getchar();
	return 0;
}

▶线性表的双向链表存储结构

typedef struct Node {
	ElementType data;				// 数据
	struct Node *prior;				// 上一个节点
	struct Node *next;				// 下一个节点
}DoubleLinkedList;

C语言的部分实现如下:

#include <stdio.h>
#include <stdlib.h>

#define TRUE 1				//true
#define FALSE 0				//false
#define OK 1				//success
#define ERROR 0				//fail

typedef int ElementType;
typedef int Status;

typedef struct DNode {
	ElementType element;
	struct DNode *prior;
	struct DNode *next;
}DNode, *DoubleLinkedList;

DoubleLinkedList doubleLinkedList = {0};

Status createHead(DoubleLinkedList *doubleLinkedList, int n);
Status createTail(DoubleLinkedList *doubleLinkedList, int n);

Status createHead(DoubleLinkedList *doubleLinkedList, int n)
{
	int i = 0;
	DoubleLinkedList point = NULL;
	*doubleLinkedList = (DoubleLinkedList)malloc(sizeof(DNode));
	(*doubleLinkedList)->next = *doubleLinkedList;
	(*doubleLinkedList)->prior = *doubleLinkedList;

	for (i = 0; i < n; i++)
	{
		point = (DoubleLinkedList)malloc(sizeof(DNode));
		point->element = i;
		point->next = (*doubleLinkedList)->next;
		(*doubleLinkedList)->next->prior = point;
		(*doubleLinkedList)->next = point;
		point->prior = (*doubleLinkedList);
	}

	return OK;
}

Status createTail(DoubleLinkedList *doubleLinkedList, int n)
{
	int i = 0;
	DoubleLinkedList point = NULL;
	DoubleLinkedList temp = NULL;
	*doubleLinkedList = (DoubleLinkedList)malloc(sizeof(DNode));
	(*doubleLinkedList)->next = NULL;

	temp = *doubleLinkedList;

	for (i = 0; i < n; i++)
	{
		point = (DoubleLinkedList)malloc(sizeof(DNode));
		point->element = i;
		temp->next = point;
		point->prior = temp;
		temp = point;
	}

	return OK;
}

int main()
{
	int i = 0;
	DoubleLinkedList temp = NULL;

	createTail(&doubleLinkedList, 10);
	temp = doubleLinkedList->next->next->next->next->next->next->next->next->next->next;
//	temp = doubleLinkedList->next;

	for (i = 0; i < 10; i++)
	{
		printf("%d, ", temp->element);
		temp = temp->prior;
	}

	return 0;
}



内容概要:本文探讨了在MATLAB/SimuLink环境中进行三相STATCOM(静态同步补偿器)无功补偿的技术方法及其仿真过程。首先介绍了STATCOM作为无功功率补偿装置的工作原理,即通过调节交流电压的幅值和相位来实现对无功功率的有效管理。接着详细描述了在MATLAB/SimuLink平台下构建三相STATCOM仿真模型的具体步骤,包括创建新模型、添加电源和负载、搭建主电路、加入控制模块以及完成整个电路的连接。然后阐述了如何通过对STATCOM输出电压和电流的精确调控达到无功补偿的目的,并展示了具体的仿真结果分析方法,如读取仿真数据、提取关键参数、绘制无功功率变化曲线等。最后指出,这种技术可以显著提升电力系统的稳定性与电能质量,展望了STATCOM在未来的发展潜力。 适合人群:电气工程专业学生、从事电力系统相关工作的技术人员、希望深入了解无功补偿技术的研究人员。 使用场景及目标:适用于想要掌握MATLAB/SimuLink软件操作技能的人群,特别是那些专注于电力电子领域的从业者;旨在帮助他们学会建立复杂的电力系统仿真模型,以便更好地理解STATCOM的工作机制,进而优化实际项目中的无功补偿方案。 其他说明:文中提供的实例代码可以帮助读者直观地了解如何从零开始构建一个完整的三相STATCOM仿真环境,并通过图形化的方式展示无功补偿的效果,便于进一步的学习与研究。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值