Multiple
Time Limit: 1000MS | Memory Limit: 32768K | |
Description
a program that, given a natural number N between 0 and 4999 (inclusively), and M distinct decimal digits X1,X2..XM (at least one), finds the smallest strictly positive multiple of N that has no other digits besides X1,X2..XM (if
such a multiple exists).
Input
The input has several data sets separated by an empty line, each data set having the following format:
On the first line - the number N
On the second line - the number M
On the following M lines - the digits X1,X2..XM.
On the first line - the number N
On the second line - the number M
On the following M lines - the digits X1,X2..XM.
Output
For each data set, the program should write to standard output on a single line the multiple, if such a multiple exists, and 0 otherwise.
An example of input and output:
An example of input and output:
Sample Input
22 3 7 0 1 2 1 1
Sample Output
110 0
————————————————————集训3.2的分割线————————————————————
前言:一道BFS做了一天……诶。
思路:首先是数论的知识,
同余定理 a % m == b % m -> (a-b) % m == 0
a1 == m*n + b1 -> a1 % m == b1 % m
-> (a1*k+a2) % m == (b1*k+b2) % m
如果a1 % n == b1,那么a1和b1同余,因此对a进行的扩增操作用在b上得到的余数是一样的。也就是说a1*10+a2和b1*10+b2同余。所以虽然是大整数,但是不需要以数字进行保存。保存余数就行啦。每增加一个数字,求出(上一层余数×10+该数字)Mod n保存下来。用类似链表的方法,拆开保存这个大整数。一旦mod n == 0,即可回过头来进行递归输出。
剪枝:同余的数不应该出现一个以上,因为这两个数效果一样。所以不进队列。
队列:首位数字不能为0的处理——首位数字可以像别的数字一样在bfs里面进队,(避免单独写出来的繁琐以及可能的出错)只需要设置一个虚拟的队首即可。
代码如下:
/*
ID: j.sure.1
PROG:
LANG: C++
*/
/****************************************/
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <stack>
#include <queue>
#include <vector>
#include <map>
#include <string>
#include <iostream>
using namespace std;
/****************************************/
int n, m;
const int N = 5005;
bool fuck[N];
int num[10];
struct Node
{
int val, fath, mod;
}q[N];
void PR(Node now)
{
if(now.fath != -1) {
PR(q[now.fath]);
printf("%d", now.val);
}
}
void bfs()
{
memset(fuck, 0, sizeof(fuck));
q[0].val = 0;
q[0].fath = -1;
q[0].mod = 0;
int fron = 0, rear = 1;
Node t;
while(fron < rear) {
t = q[fron];
for(int i = 0; i < m; i++) {
if(t.fath == -1 && num[i] == 0)
continue;
Node nt;
nt.val = num[i];
nt.fath = fron;
nt.mod = (t.mod*10 + nt.val) % n;
if(nt.mod == 0) {
PR(nt);
puts("");
return ;
}
if(!fuck[nt.mod]) {
fuck[nt.mod] = 1;
q[rear++] = nt;
}
}
fron++;
}
puts("0");
}
int main()
{
while(~scanf("%d", &n)) {
scanf("%d", &m);
for(int i = 0; i < m; i++)
scanf("%d", &num[i]);
if(n == 0||m == 0) {
puts("0");
continue;
}
sort(num, num+m);
bfs();
}
return 0;
}