Charm Bracelet
Description Bessie has gone to the mall's jewelry store and spies a charm bracelet. Of course, she'd like to fill it with the best charms possible from the N (1 ≤ N ≤ 3,402) available charms. Each charm i in the supplied list has a weight Wi(1 ≤ Wi ≤ 400), a 'desirability' factor Di (1 ≤ Di ≤ 100), and can be used at most once. Bessie can only support a charm bracelet whose weight is no more than M (1 ≤ M ≤ 12,880). Given that weight limit as a constraint and a list of the charms with their weights and desirability rating, deduce the maximum possible sum of ratings. Input * Line 1: Two space-separated integers: N and M Output * Line 1: A single integer that is the greatest sum of charm desirabilities that can be achieved given the weight constraints Sample Input 4 6 1 4 2 6 3 12 2 7 Sample Output 23 Source
USACO 2007 December Silver
|
————————————————————无聊的分割线————————————————————
思路:01背包。我就不多说了。都会做。
代码如下:
/****************************************/
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <stack>
#include <queue>
#include <vector>
#include <map>
#include <string>
#include <iostream>
using namespace std;
/****************************************/
int f[12890];
int main()
{
int n, V, cost, worth;
while(~scanf("%d%d", &n, &V)) {
for(int i = 0; i < n; i++) {
scanf("%d%d", &cost, &worth);
for(int j = V; j >= cost; j--)
f[j] = max(f[j], f[j-cost] + worth);
}
printf("%d\n", f[V]);
}
return 0;
}