- struct bio {
- sector_t bi_sector; /* device address in 512 byte
- sectors */
- struct bio *bi_next; /* request queue link */
- struct block_device *bi_bdev;
- unsigned long bi_flags; /* status, command, etc */
- unsigned long bi_rw; /* bottom bits READ/WRITE,
- * top bits priority
- */
- unsigned short bi_vcnt; /* how many bio_vec's */
- unsigned short bi_idx; /* current index into bvl_vec */
- /* Number of segments in this BIO after
- * physical address coalescing is performed.
- */
- unsigned int bi_phys_segments;
- unsigned int bi_size; /* residual I/O count */
- /*
- * To keep track of the max segment size, we account for the
- * sizes of the first and last mergeable segments in this bio.
- */
- unsigned int bi_seg_front_size;
- unsigned int bi_seg_back_size;
- unsigned int bi_max_vecs; /* max bvl_vecs we can hold */
- unsigned int bi_comp_cpu; /* completion CPU */
- atomic_t bi_cnt; /* pin count */
- struct bio_vec *bi_io_vec; /* the actual vec list */
- bio_end_io_t *bi_end_io;
- void *bi_private;
- #if defined(CONFIG_BLK_DEV_INTEGRITY)
- struct bio_integrity_payload *bi_integrity; /* data integrity */
- #endif
- bio_destructor_t *bi_destructor; /* destructor */
- /*
- * We can inline a number of vecs at the end of the bio, to avoid
- * double allocations for a small number of bio_vecs. This member
- * MUST obviously be kept at the very end of the bio.
- */
- struct bio_vec bi_inline_vecs[0];
- };
bi_sector:该I/O操作的起始扇区号
bi_rw:指明了读写方向
bi_vcnt:该I/O操作中涉及到了多少个缓存向量,每个缓存向量由[page,offset,len]来描述
bi_idx:指示当前的缓存向量
bi_io_vec:缓存向量数组
缓存向量的定义:
- struct bio_vec {
- struct page *bv_page;
- unsigned int bv_len;
- unsigned int bv_offset;
- };
struct request用于描述提交给块设备的I/O请求,bio会动态地添加进request,因此一个request往往会包含若干相邻的bio。
- struct request {
- struct list_head queuelist;
- struct call_single_data csd;
- int cpu;
- struct request_queue *q;
- unsigned int cmd_flags;
- enum rq_cmd_type_bits cmd_type;
- unsigned long atomic_flags;
- /* the following two fields are internal, NEVER access directly */
- sector_t __sector; /* sector cursor */
- unsigned int __data_len; /* total data len */
- struct bio *bio;
- struct bio *biotail;
- struct hlist_node hash; /* merge hash */
- /*
- * The rb_node is only used inside the io scheduler, requests
- * are pruned when moved to the dispatch queue. So let the
- * completion_data share space with the rb_node.
- */
- union {
- struct rb_node rb_node; /* sort/lookup */
- void *completion_data;
- };
- /*
- * two pointers are available for the IO schedulers, if they need
- * more they have to dynamically allocate it.
- */
- void *elevator_private;
- void *elevator_private2;
- struct gendisk *rq_disk;
- unsigned long start_time;
- /* Number of scatter-gather DMA addr+len pairs after
- * physical address coalescing is performed.
- */
- unsigned short nr_phys_segments;
- unsigned short ioprio;
- void *special; /* opaque pointer available for LLD use */
- char *buffer; /* kaddr of the current segment if available */
- int tag;
- int errors;
- int ref_count;
- /*
- * when request is used as a packet command carrier
- */
- unsigned short cmd_len;
- unsigned char __cmd[BLK_MAX_CDB];
- unsigned char *cmd;
- unsigned int extra_len; /* length of alignment and padding */
- unsigned int sense_len;
- unsigned int resid_len; /* residual count */
- void *sense;
- unsigned long deadline;
- struct list_head timeout_list;
- unsigned int timeout;
- int retries;
- /*
- * completion callback.
- */
- rq_end_io_fn *end_io;
- void *end_io_data;
- /* for bidi */
- struct request *next_rq;
- };
queuelist:用于将request链入请求队列的链表元素
q:指向所属的请求队列
__sector:下一个要传输的bio的起始扇区号
__data_len:request要传输的数据字节数
bio,biotail:用于维护request中的bio链表
在之前介绍的gendisk结构中,可以看到每个块设备(或分区)都对应了一个request_queue的结构,该结构用来容纳request,并且包含了相应的递交request以及I/O调度的方法
递交一个bio的主要工作是从generic_make_request()函数开始的,我们以此为入口来分析一个bio的递交过程。在每个进程的task_struct中,都包含有两个变量----struct bio *bio_list, **bio_tail,generic_make_request()的主要工作就是用这两个变量来维护当前待添加的bio链表,实际的提交操作会由generic_make_request()调用__generic_make_request()函数完成。而在__generic_make_request()中,会调用到queue_list中定义的make_request_fn函数,也就是特定于设备的提交请求函数来完成后续的工作。在这里便会有一些问题,大部分设备的make_request_fn都可以直接定义为内核实现的__make_request函数,而一些设备需要使用自己的make_request_fn,而自行实现的make_request_fn有可能会递归调用gerneric_make_request(),由于内核的堆栈十分有限,因此在generic_make_request()的实现中,玩了一些小把戏,使得递归的深度不会超过一层。我们注意到bio_tail是一个二级指针,这个值最初是NULL,当有bio添加进来,bio_tail将会指向bio->bi_next(如果bio全都递交上去了,则bio_tail将会指向bio_list),也就是说除了第一次调用外,其他每次递归调用generic_make_request()函数都会出现bio_tail不为NULL的情形,因此当bio_tail不为NULL时,则只将bio添加到由bio_list和bio_tail维护的链表中,然后直接返回,而不调用__generic_make_request(),这样便防止了多重递归的产生
- void generic_make_request(struct bio *bio)
- {
- if (current->bio_tail) {//current->bio_tail不为空则表明有bio正在提交,也就是说是处于递归调用
- /* make_request is active */
- bio->bi_next = NULL;
- /*这里current->tail有两种情况,当current的bio链表为空时,bio_tail指向的是bio_list
- 当current的bio链表不为空时,bio_tail指向的是最后一个bio的bi_next指针,因此
- 这句的实际作用就是将bio添加到了current的bio链表的尾部*/
- *(current->bio_tail) = bio;
- current->bio_tail = &bio->bi_next;
- /*这里直接返回,遍历并且提交bio的工作永远都是交给最先调用的generic_make_request来处理的,避免了多重递归*/
- return;
- }
- /* following loop may be a bit non-obvious, and so deserves some
- * explanation.
- * Before entering the loop, bio->bi_next is NULL (as all callers
- * ensure that) so we have a list with a single bio.
- * We pretend that we have just taken it off a longer list, so
- * we assign bio_list to the next (which is NULL) and bio_tail
- * to &bio_list, thus initialising the bio_list of new bios to be
- * added. __generic_make_request may indeed add some more bios
- * through a recursive call to generic_make_request. If it
- * did, we find a non-NULL value in bio_list and re-enter the loop
- * from the top. In this case we really did just take the bio
- * of the top of the list (no pretending) and so fixup bio_list and
- * bio_tail or bi_next, and call into __generic_make_request again.
- *
- * The loop was structured like this to make only one call to
- * __generic_make_request (which is important as it is large and
- * inlined) and to keep the structure simple.
- */
- BUG_ON(bio->bi_next);
- do {
- current->bio_list = bio->bi_next;//这里取current的待提交bio链表的下一个bio
- if (bio->bi_next == NULL)//bi_next为空,也就是说待提交链表已经空了,只剩下最后一个bio了
- current->bio_tail = ¤t->bio_list;//bio_tail指向bio_list
- else
- bio->bi_next = NULL;//否则将bio提取出来
- __generic_make_request(bio);//提交bio
- bio = current->bio_list;//取新的待提交bio
- } while (bio);
- current->bio_tail = NULL; /* deactivate */
- }
__generic_make_request()首先由bio对应的block_device获取等待队列q,然后要检查对应的设备是不是分区,如果是分区的话要将扇区地址进行重新计算,最后调用make_request_fn完成bio的递交
- static inline void __generic_make_request(struct bio *bio)
- {
- struct request_queue *q;
- sector_t old_sector;
- int ret, nr_sectors = bio_sectors(bio);//提取bio的大小,以扇区为单位
- dev_t old_dev;
- int err = -EIO;
- might_sleep();
- //这里检查bio的传输起始扇区是否超过设备的最大扇区,并且两者之间的差不能小于nr_sector
- if (bio_check_eod(bio, nr_sectors))
- goto end_io;
- /*
- * Resolve the mapping until finished. (drivers are
- * still free to implement/resolve their own stacking
- * by explicitly returning 0)
- *
- * NOTE: we don't repeat the blk_size check for each new device.
- * Stacking drivers are expected to know what they are doing.
- */
- old_sector = -1;
- old_dev = 0;
- do {
- char b[BDEVNAME_SIZE];
- q = bdev_get_queue(bio->bi_bdev);//获取对应设备的请求队列
- if (unlikely(!q)) {
- printk(KERN_ERR
- "generic_make_request: Trying to access "
- "nonexistent block-device %s (%Lu)\n",
- bdevname(bio->bi_bdev, b),
- (long long) bio->bi_sector);
- goto end_io;
- }
- /*下面做一些必要的检查*/
- if (unlikely(!bio_rw_flagged(bio, BIO_RW_DISCARD) &&
- nr_sectors > queue_max_hw_sectors(q))) {
- printk(KERN_ERR "bio too big device %s (%u > %u)\n",
- bdevname(bio->bi_bdev, b),
- bio_sectors(bio),
- queue_max_hw_sectors(q));
- goto end_io;
- }
- if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
- goto end_io;
- if (should_fail_request(bio))
- goto end_io;
- /*
- * If this device has partitions, remap block n
- * of partition p to block n+start(p) of the disk.
- */
- //如果bio指定的是一个分区,则传输点要重新进行计算
- blk_partition_remap(bio);
- if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
- goto end_io;
- if (old_sector != -1)
- trace_block_remap(q, bio, old_dev, old_sector);
- old_sector = bio->bi_sector;
- old_dev = bio->bi_bdev->bd_dev;
- if (bio_check_eod(bio, nr_sectors))
- goto end_io;
- if (bio_rw_flagged(bio, BIO_RW_DISCARD) &&
- !blk_queue_discard(q)) {
- err = -EOPNOTSUPP;
- goto end_io;
- }
- trace_block_bio_queue(q, bio);
- ret = q->make_request_fn(q, bio);//这里是关键,调用请求队列中的make_request_fn函数处理请求
- } while (ret);
- return;
- end_io:
- bio_endio(bio, err);
- }
辅助函数blk_partition_remap():
- static inline void blk_partition_remap(struct bio *bio)
- {
- struct block_device *bdev = bio->bi_bdev;
- /*首先要保证传输的大小不能小于1个扇区并且bdev确实是分区*/
- if (bio_sectors(bio) && bdev != bdev->bd_contains) {
- struct hd_struct *p = bdev->bd_part;//获取分区信息
- bio->bi_sector += p->start_sect;//在传输起点的原基础上加上分区的起始扇区号
- bio->bi_bdev = bdev->bd_contains;//将bio的bdev置为主设备
- trace_block_remap(bdev_get_queue(bio->bi_bdev), bio,
- bdev->bd_dev,
- bio->bi_sector - p->start_sect);
- }
- }
可以看到这里将bio的参考对象设置为了主设备,而不是分区,因此对应的扇区起始号也要计算为扇区的绝对值。
大多数的make_request_fn函数都可以直接定义为__make_request(),我们通过这个函数来分析递交bio的关键操作
- static int __make_request(struct request_queue *q, struct bio *bio)
- {
- struct request *req;
- int el_ret;
- unsigned int bytes = bio->bi_size;
- const unsigned short prio = bio_prio(bio);
- const bool sync = bio_rw_flagged(bio, BIO_RW_SYNCIO);
- const bool unplug = bio_rw_flagged(bio, BIO_RW_UNPLUG);
- const unsigned int ff = bio->bi_rw & REQ_FAILFAST_MASK;
- int rw_flags;
- /*如果BIO_RW_BARRIER被置位(表示必须得让请求队列中的所有bio传递完毕才处理自己),
- 但是不支持hardbarrier,不能进行bio的提交*/
- if (bio_rw_flagged(bio, BIO_RW_BARRIER) &&
- (q->next_ordered == QUEUE_ORDERED_NONE)) {
- bio_endio(bio, -EOPNOTSUPP);
- return 0;
- }
- /*
- * low level driver can indicate that it wants pages above a
- * certain limit bounced to low memory (ie for highmem, or even
- * ISA dma in theory)
- */
- blk_queue_bounce(q, &bio);
- spin_lock_irq(q->queue_lock);
- //如果BIO_RW_BARRIER被置位或者请求队列为空,则情况比较简单,不用进行bio的合并,跳转到get_rq处处理
- if (unlikely(bio_rw_flagged(bio, BIO_RW_BARRIER)) || elv_queue_empty(q))
- goto get_rq;
- /**请求队列不为空**/
- /*elv_merge()试图寻找一个已存在的request,将bio并入其中*/
- el_ret = elv_merge(q, &req, bio);
- switch (el_ret) {
- case ELEVATOR_BACK_MERGE:
- BUG_ON(!rq_mergeable(req));
- /*相关检查*/
- if (!ll_back_merge_fn(q, req, bio))
- break;
- trace_block_bio_backmerge(q, bio);
- if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
- blk_rq_set_mixed_merge(req);
- /*这里将bio插入到request尾部*/
- req->biotail->bi_next = bio;
- req->biotail = bio;
- req->__data_len += bytes;
- req->ioprio = ioprio_best(req->ioprio, prio);
- if (!blk_rq_cpu_valid(req))
- req->cpu = bio->bi_comp_cpu;
- drive_stat_acct(req, 0);
- if (!attempt_back_merge(q, req))
- elv_merged_request(q, req, el_ret);
- goto out;
- case ELEVATOR_FRONT_MERGE:
- BUG_ON(!rq_mergeable(req));
- if (!ll_front_merge_fn(q, req, bio))
- break;
- trace_block_bio_frontmerge(q, bio);
- if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) {
- blk_rq_set_mixed_merge(req);
- req->cmd_flags &= ~REQ_FAILFAST_MASK;
- req->cmd_flags |= ff;
- }
- /*这里将bio插入到request的头部*/
- bio->bi_next = req->bio;
- req->bio = bio;
- /*
- * may not be valid. if the low level driver said
- * it didn't need a bounce buffer then it better
- * not touch req->buffer either...
- */
- req->buffer = bio_data(bio);
- req->__sector = bio->bi_sector;
- req->__data_len += bytes;
- req->ioprio = ioprio_best(req->ioprio, prio);
- if (!blk_rq_cpu_valid(req))
- req->cpu = bio->bi_comp_cpu;
- drive_stat_acct(req, 0);
- if (!attempt_front_merge(q, req))
- elv_merged_request(q, req, el_ret);
- goto out;
- /* ELV_NO_MERGE: elevator says don't/can't merge. */
- default:
- ;
- }
- get_rq:/**下面的代码对应请求队列为空的情况,需要先分配一个request,再将bio插入***/
- /*
- * This sync check and mask will be re-done in init_request_from_bio(),
- * but we need to set it earlier to expose the sync flag to the
- * rq allocator and io schedulers.
- */
- rw_flags = bio_data_dir(bio);//确定读写标识
- if (sync)
- rw_flags |= REQ_RW_SYNC;
- /*
- * Grab a free request. This is might sleep but can not fail.
- * Returns with the queue unlocked.
- */
- req = get_request_wait(q, rw_flags, bio);//分配一个新的request
- /*
- * After dropping the lock and possibly sleeping here, our request
- * may now be mergeable after it had proven unmergeable (above).
- * We don't worry about that case for efficiency. It won't happen
- * often, and the elevators are able to handle it.
- */
- //根据bio初始化新分配的request,并将bio插入到request中
- init_request_from_bio(req, bio);
- spin_lock_irq(q->queue_lock);
- if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags) ||
- bio_flagged(bio, BIO_CPU_AFFINE))
- req->cpu = blk_cpu_to_group(smp_processor_id());
- if (queue_should_plug(q) && elv_queue_empty(q))
- blk_plug_device(q);
- add_request(q, req);//将request插入到请求队列
- out:
- if (unplug || !queue_should_plug(q))
- __generic_unplug_device(q);
- spin_unlock_irq(q->queue_lock);
- return 0;
- }
elv_merge()是执行合并的关键所在,执行完后会有三种情况:
1.bio添加到了一个request的bio链表尾部
2.bio添加到了一个request的bio链表首部
3.未能找到一个request可以添加,将重新分配一个request
- int elv_merge(struct request_queue *q, struct request **req, struct bio *bio)
- {
- struct elevator_queue *e = q->elevator;
- struct request *__rq;
- int ret;
- /*
- * First try one-hit cache.
- */
- //last_merge指向了最近进行合并操作的request,最先试图将bio合并到该request中
- if (q->last_merge) {
- ret = elv_try_merge(q->last_merge, bio);
- if (ret != ELEVATOR_NO_MERGE) {
- *req = q->last_merge;
- return ret;
- }
- }
- if (blk_queue_nomerges(q))//请求队列不允许合并请求,则返回NO_MERGE
- return ELEVATOR_NO_MERGE;
- /*
- * See if our hash lookup can find a potential backmerge.
- */
- //根据bio的起始扇区号,通过rq的哈希表寻找一个request,可以将bio合并到request的尾部
- __rq = elv_rqhash_find(q, bio->bi_sector);
- if (__rq && elv_rq_merge_ok(__rq, bio)) {
- *req = __rq;
- return ELEVATOR_BACK_MERGE;
- }
- /*如果以上的方法不成功,则调用特定于io调度器的elevator_merge_fn函数寻找一个合适的request*/
- if (e->ops->elevator_merge_fn)
- return e->ops->elevator_merge_fn(q, req, bio);
- return ELEVATOR_NO_MERGE;
- }
elevator_merge_fn是特定于I/O调度器的方式,至此,递交I/O请求的通用层部分也就分析完了。