HDU 5014解题报告

Number Sequence

     Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
     Total Submission(s): 1279    Accepted Submission(s): 548
      Special Judge


Problem Description
There is a special number sequence which has n+1 integers. For each number in sequence, we have two rules:

● a i ∈ [0,n] 
● a i ≠ a j( i ≠ j )

For sequence a and sequence b, the integrating degree t is defined as follows(“⊕” denotes exclusive or):

t = (a 0 ⊕ b 0) + (a 1 ⊕ b 1) +···+ (a n ⊕ b n)


(sequence B should also satisfy the rules described above)

Now give you a number n and the sequence a. You should calculate the maximum integrating degree t and print the sequence b.
 

Input
There are multiple test cases. Please process till EOF. 

For each case, the first line contains an integer n(1 ≤ n ≤ 10 5), The second line contains a 0,a 1,a 2,...,a n.
 

Output
For each case, output two lines.The first line contains the maximum integrating degree t. The second line contains n+1 integers b 0,b 1,b 2,...,b n. There is exactly one space between b i and b i+1 (0 ≤ i ≤ n - 1). Don’t ouput any spaces after b n.
 

Sample Input
  
4 2 0 1 4 3
 

Sample Output
  
20 1 0 2 3 4
 

Source
 

Recommend
hujie   |   We have carefully selected several similar problems for you:   5111  5110  5109  5108  5107 

解题思路

       这道题关键是在a[i]的范围是在0~n之间,而要保证a[0]^b[0]+a[1]^b[1]+……a[n]^b[n]的值最大。也就是要尽量将a[i]在二进制下的每一位取反。但是这样容易产生重复的问题,不知道如何去取舍。比如样例中的a[i]为2时,b[i]可以取1,a[i]为0时,b[i]可以取1。这样便产生了问题。。所以为了保证数值的最大,2^1=3,而0^1=1,所以应该优先满足较大的数。又因为a[i]和b[i]的范围都是0~n。所以可以从n到0做一个循环,从大到小逐个数进行考虑。将这个i的每一位取反,得到一个新的数。然后就得到一对数,保证他们局部的异或值最大。然后将这些异或的值加起来即可。

       总的来说,这道题用到了贪心的思想,而且用到了哈希的思想,建立一一映射。还是比较巧妙的。

参考代码

#include<cstdio>
#include<iostream>
#define __CLR(x) memset(x,-1,sizeof(x))
#define ll long long
using namespace std;
const int maxn=100010;

int a[maxn],b[maxn];
int main()
{
    //ios_base::sync_with_stdio(0);
    int n;
    while(~scanf("%d",&n))
    {
        for(int i=0; i<=n; i++)
            scanf("%d",&a[i]);
        ll ans=0;
        __CLR(b);
        for(int i=n; i>=0; i--)
        {
            if(b[i]>=0) continue;
            int num=0,k=i,s=1;
            while(k>0)
            {
                int t=(k%2)?0:1;
                num=num+s*t;
                s*=2;
                k/=2;
            }
            b[num]=i;
            b[i]=num;
            ans+=2*(b[i]^b[num]);
        }
        printf("%I64d\n",ans);
        for(int i=0;i<=n;i++)
        {
            if(i>0) printf(" ");
            printf("%d",b[a[i]]);
        }
        printf("\n");
    }
}


 








评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值