题目:
Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.
给定一个三角形,发现从上最下,找出和为最小的路径。每一个步骤,你只能移动到低于该行上的相邻的数字。
For example, given the following triangle
[ [2], [3,4], [6,5,7], [4,1,8,3] ]
The minimum path sum from top to bottom is 11
(i.e., 2 + 3 + 5 + 1 =
11).
Note:
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.
思路:
把三角形看成如下这样的矩阵
[ [2], [3,4], [6,5,7], [4,1,8,3] ]
设状态f(i,j)表示从(i,j)出发,路径的最小和,采用自底向上的动态规划方法,
从下往上遍历,则有状态方程:f(i,j)=min(f(i+1,j),f(i+1,j+1))+(i,j)。
代码:
class Solution {
public:
int minimumTotal(vector<vector<int> > &triangle)
{
//设状态f(i,j)表示从(i,j)出发,路径的最小和
//从下往上遍历,则有状态方程:f(i,j)=min(f(i+1,j),f(i+1,j+1))+(i,j)
//采用自底向上的动态规划方法
for(int i = triangle.size()-2 ; i >=0 ; i--)//i第一次取倒数第二行
{
for(int j = 0 ; j < i+1 ; j++)
{
triangle[i][j] = min(triangle[i+1][j] , triangle[i+1][j+1]) + triangle[i][j];
}
}
return triangle[0][0];
}
};