Hadoop计算模型MapReduce及其体系结构

Hadoop MapReduce将输入数据集切分为独立块并由map任务并行处理,接着通过reduce任务进行结果整合。框架在节点上执行任务并监控,重新执行失败任务,确保高效使用网络带宽。MapReduce架构包括一个JobTracker和多个TaskTracker,JobTracker调度任务,TaskTracker执行任务。作业需指定输入/输出位置,实现map和reduce函数,JobTracker接收作业并分发给TaskTracker执行,提供状态和诊断信息。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Hadoop计算模型MapReduce及其体系结构

1. Hadoop计算模型

一个MapReduce 作业(job) 通常会把输入的数据集切分为若干个独立的数据块,由 map任务(task)以完全并行的方式处理它们。框架会先对map的输出进行排序,然后把结果输入给reduce任务。通常作业的输入和输出都会被存储在文件系统中。整个框架负责任务的调度和监控,以及重新执行已经失败的任务。

  通常,MapReduce框架和分布式文件系统是运行在一组相同的节点上的,也就是说,计算节点和存储节点在一起。这种配置允许框架在那些已经存好数据的节点上高效地调度任务,这可以使整个集群的网络带宽被非常高效的利用。

  MapReduce框架由一个单独的master JobTracker 和集群节点上的slave TaskTracker共同组成。master负责调度构成一个作业的所有任务,这些任务分布在不同的slave上。master监控它们的执行情况,并重新执行已经失败的任务,而slave仅负责执行由master指派的任务。

  在Hadoop上运行的作业需要指明程序的输入/输出位置(路径),并通过实现合适的接口或抽象类来提供map和reduce函数。同时还需要指定作业的其他参数,构成作业配置(job configuration)。在Hadoop的 jobclient提交作业(jar包/可执行程序等)和配置信息给JobTracker之后,JobTracker会负责分发这些软件和配置信息给slave及调度任务,并监控它们的执行,同时提供状态和诊断信息给jobclient。

2 .MapReduce的体系结构

  接下来介绍MapReduce的体系结构,MapReduce是一种并行编程模式,这种模式使得软件开发者可以轻松地编写出分布式并行程序。在Hadoop的体系结构中,MapReduce是一个简单易用的软件框架,基于它可以将任务分发到由上千台商用机器组成的集群上,并以一种高容错的方式并行处理大量的数据集,实现Hadoop的并行任务处理功能。MapReduce框架是由一个单独运行在主节点上的JobTracker和运行在每个集群从节点上的TaskTracker共同组成的。主节点负责调度构成一个作业的所有任务,这些任务分布在不同的从节点上。主节点监控它们的执行情况,并且重新执行之前失败的任务;从节点仅负责由主节点指派的任务。当一个Job被提交时,JobTracker接收到提交作业和配置信息之后,就会将配置信息等分发给从节点,同时调度任务并监控TaskTracker的执行。

  从上面的介绍可以看出,HDFS和MapReduce共同组成了Hadoop分布式系统体系结构的核心。HDFS在集群上实现了分布式文件系统,MapReduce在集群上实现了分布式计算和任务处理。HDFS在MapReduce任务处理过程中提供了文件操作和存储等支持,MapReduce在HDFS的基础上实现了任务的分发、跟踪、执行等工作,并收集结果,二者相互作用,完成了Hadoop分布式集群的主要任务


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值