一、题目
从上到下按层打印二叉树,同一层的结点按从左到右的顺序打印,每一层打印到一行。
二、关键
1.队列
2.两个变量。
三、解释
1.队列:使用队列保存将要打印的节点。
2.两个变量:把二叉树的每一行单独打印到一行中。一个变量表示当前层中还没有打印的节点数;另个一变量表示下一层节点的数目。
3.思路:变量toBePrinted表示在当前层中还没有打印的节点数,变量nextLevel表示下一层的节点数。如果一个节点有子节点,则把每一个子节点加入队列,同时把变量nextLevel加1.每打印一个节点,toBePrinted减1.当toBePrinted变成0时,表示当前层的所有节点已经打印完毕,可以继续打印下一层。
四、代码
#include <cstdio>
#include "..\Utilities\BinaryTree.h"
#include <queue>
void Print(BinaryTreeNode* pRoot)
{
if(pRoot == nullptr)
return;
std::queue<BinaryTreeNode*> nodes;
nodes.push(pRoot);
int nextLevel = 0;
int toBePrinted = 1;
while(!nodes.empty())
{
BinaryTreeNode* pNode = nodes.front();
printf("%d ", pNode->m_nValue);
if(pNode->m_pLeft != nullptr)
{
nodes.push(pNode->m_pLeft);
++nextLevel;
}
if(pNode->m_pRight != nullptr)
{
nodes.push(pNode->m_pRight);
++nextLevel;
}
nodes.pop();
--toBePrinted;
if(toBePrinted == 0)
{
printf("\n");
toBePrinted = nextLevel;
nextLevel = 0;
}
}
}
// ====================测试代码====================
// 8
// 6 10
// 5 7 9 11
void Test1()
{
BinaryTreeNode* pNode8 = CreateBinaryTreeNode(8);
BinaryTreeNode* pNode6 = CreateBinaryTreeNode(6);
BinaryTreeNode* pNode10 = CreateBinaryTreeNode(10);
BinaryTreeNode* pNode5 = CreateBinaryTreeNode(5);
BinaryTreeNode* pNode7 = CreateBinaryTreeNode(7);
BinaryTreeNode* pNode9 = CreateBinaryTreeNode(9);
BinaryTreeNode* pNode11 = CreateBinaryTreeNode(11);
ConnectTreeNodes(pNode8, pNode6, pNode10);
ConnectTreeNodes(pNode6, pNode5, pNode7);
ConnectTreeNodes(pNode10, pNode9, pNode11);
printf("====Test1 Begins: ====\n");
printf("Expected Result is:\n");
printf("8 \n");
printf("6 10 \n");
printf("5 7 9 11 \n\n");
printf("Actual Result is: \n");
Print(pNode8);
printf("\n");
DestroyTree(pNode8);
}
// 5
// 4
// 3
// 2
void Test2()
{
BinaryTreeNode* pNode5 = CreateBinaryTreeNode(5);
BinaryTreeNode* pNode4 = CreateBinaryTreeNode(4);
BinaryTreeNode* pNode3 = CreateBinaryTreeNode(3);
BinaryTreeNode* pNode2 = CreateBinaryTreeNode(2);
ConnectTreeNodes(pNode5, pNode4, nullptr);
ConnectTreeNodes(pNode4, pNode3, nullptr);
ConnectTreeNodes(pNode3, pNode2, nullptr);
printf("====Test2 Begins: ====\n");
printf("Expected Result is:\n");
printf("5 \n");
printf("4 \n");
printf("3 \n");
printf("2 \n\n");
printf("Actual Result is: \n");
Print(pNode5);
printf("\n");
DestroyTree(pNode5);
}
// 5
// 4
// 3
// 2
void Test3()
{
BinaryTreeNode* pNode5 = CreateBinaryTreeNode(5);
BinaryTreeNode* pNode4 = CreateBinaryTreeNode(4);
BinaryTreeNode* pNode3 = CreateBinaryTreeNode(3);
BinaryTreeNode* pNode2 = CreateBinaryTreeNode(2);
ConnectTreeNodes(pNode5, nullptr, pNode4);
ConnectTreeNodes(pNode4, nullptr, pNode3);
ConnectTreeNodes(pNode3, nullptr, pNode2);
printf("====Test3 Begins: ====\n");
printf("Expected Result is:\n");
printf("5 \n");
printf("4 \n");
printf("3 \n");
printf("2 \n\n");
printf("Actual Result is: \n");
Print(pNode5);
printf("\n");
DestroyTree(pNode5);
}
void Test4()
{
BinaryTreeNode* pNode5 = CreateBinaryTreeNode(5);
printf("====Test4 Begins: ====\n");
printf("Expected Result is:\n");
printf("5 \n\n");
printf("Actual Result is: \n");
Print(pNode5);
printf("\n");
DestroyTree(pNode5);
}
void Test5()
{
printf("====Test5 Begins: ====\n");
printf("Expected Result is:\n");
printf("Actual Result is: \n");
Print(nullptr);
printf("\n");
}
// 100
// /
// 50
// \
// 150
void Test6()
{
BinaryTreeNode* pNode100 = CreateBinaryTreeNode(100);
BinaryTreeNode* pNode50 = CreateBinaryTreeNode(50);
BinaryTreeNode* pNode150 = CreateBinaryTreeNode(150);
ConnectTreeNodes(pNode100, pNode50, nullptr);
ConnectTreeNodes(pNode50, nullptr, pNode150);
printf("====Test6 Begins: ====\n");
printf("Expected Result is:\n");
printf("100 \n");
printf("50 \n");
printf("150 \n\n");
printf("Actual Result is: \n");
Print(pNode100);
printf("\n");
}
int main(int argc, char* argv[])
{
Test1();
Test2();
Test3();
Test4();
Test5();
Test6();
return 0;
}