150.逆波兰表达式求值
//需理解该计算方法和字符串消除类似,只是变成了两数的运算
int evalRPN(vector<string>& tokens) {
stack<long long> stack_eval;
for(int i = 0; i < tokens.size(); i++){
if(tokens[i] == "+" || tokens[i] == "-" || tokens[i] == "*" || tokens[i] == "/"){
long long num_1 = stack_eval.top();
stack_eval.pop();
long long num_2 = stack_eval.top();
stack_eval.pop();
if(tokens[i] == "+") stack_eval.push(num_2 + num_1);
if(tokens[i] == "-") stack_eval.push(num_2 - num_1);
if(tokens[i] == "*") stack_eval.push(num_2 * num_1);
if(tokens[i] == "/") stack_eval.push(num_2 / num_1);
}else{
stack_eval.push(stoll(tokens[i]));
}
}
long long result = stack_eval.top();
return result;
}
239.滑动窗口最大值,需二刷
//第一想法是判断k中最大值然后输出,时间复杂度为O(n*k),报超时
vector<int> maxSlidingWindow(vector<int>& nums, int k) {
vector<int> result;
for(int i = nums.size()-1; i >= k - 1; i--){
int max = nums[i];
for(int j = k-1 ; j > 0; j--){
if(nums[i-j] > max){
max = nums[i-j];
}
}
result.push_back(max);
}
reverse(result.begin(), result.end());
return result;
}
//解法二需了解单调队列的概念以及用哪种数据结构实现
class MyDeque{
public:
deque<int> _deque;
void pop(int value){
if(value == _deque.front()){
_deque.pop_front();
}
}
void push(int value){
while(!_deque.empty() && value > _deque.back()){
_deque.pop_back();
}
_deque.push_back(value);
}
int front(){
return _deque.front();
}
};
vector<int> maxSlidingWindow(vector<int>& nums, int k) {
vector<int> result;
MyDeque my_deque;
for(int i = 0; i < k; i++){
my_deque.push(nums[i]);
}
result.push_back(my_deque.front());
for(int j = k; j < nums.size(); j++){
my_deque.pop(nums[j-k]);
my_deque.push(nums[j]);
result.push_back(my_deque.front());
}
return result;
}
347.前K个高频元素,需二刷
//理解优先级队列中大顶堆,小顶堆的概念及用法
struct Compare{
bool operator()(pair<int, int>lhs, pair<int, int>rhs){
//小顶堆是大于,大顶堆是小于
return lhs.second > rhs.second;
}
};
vector<int> topKFrequent(vector<int>& nums, int k) {
vector<int> result(k);
unordered_map<int, int> _map;
for(int i = 0; i < nums.size(); i++){
_map[nums[i]]++;
}
std::priority_queue<pair<int, int>, std::vector<pair<int, int>>, Compare> _priority;
for(unordered_map<int, int>::iterator it = _map.begin(); it != _map.end(); it++){
_priority.push(*it);
//保持k个元素在小顶堆中,删除小的堆顶留下的就是较大的K个
if(_priority.size() > k){
_priority.pop();
}
}
for(int j = k-1; j >= 0; j--){
//倒叙输出,最大的在堆最后
result[j] = _priority.top().first;
_priority.pop();
}
return result;
}