Spark的分布式运行模式 Local,Standalone, Spark on Mesos, Spark on Yarn, Kubernetes

本文详细介绍了Spark的五种分布式运行模式:Local模式,Standalone模式,Spark on Mesos的粗粒度和细粒度模式,Spark on Yarn的Yarn-Client和Yarn-cluster模式,以及Kubernetes模式。着重讨论了每种模式的特点、资源管理和调度机制,帮助理解Spark如何在不同环境下高效运行。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Spark的分布式运行模式 Local,Standalone, Spark on Mesos, Spark on Yarn, Kubernetes

Local模式

Standalone模式的单机版,Master和Worker分别运行在一台机器的不同进程上

Standalone模式

Standalone模式即独立模式,自带完整的服务,可以单独部署到一个集群中,不需要任何的资源管理系统,只支持FIFO调度,在该模式下没有AM和NM的概念,也没有RM的概念,用户节点直接与Master交互,由Driver负责向Master申请资源,由Driver进行资源的分配和调度等。目前Spark在Standalone模式下是没有任何单点故障问题的,借助了zk思想类似hbase Master单点故障解决方案。 各个节点上的资源被抽象成粗粒度的slot,有多少slot就能同时运行多少task。

Spark on Mesos模式

Spark on Mesos模式。在Spark on Mesos环境中,用户可选择两种调度模式之一运行自己的应用程序(可参考Andrew Xia的“Mesos Scheduling Mode on Spark”)

粗粒度模式(Coarse-grained Mode):每个应用程序的运行环境由一个Dirver和若干个Executor组成,其中,每个Executor占用若干资源,内部可运行多个Task(对应多少个“slot”)。应用程序的各个任务正式运行之前,需要将运行环境中的资源全部申请好,且运行过程中要一直占用这些资源,即使不用,最后程序运行结束后,回收这些资源。举个例子,比如你提交应用程序时,指定使用5个executor运行你的应用程序,每个executor占用5GB内存和5个CPU,每个executor内部设置了5个slot,则Mesos需要先为executor分配资源并启动它们,之后开始调度任务。另外,在程序运行过程中,Mesos的Master和slave并不知道executor内部各个task的运行情况,executor直接将任务状态通过内部的通信机制汇报给Driver,从一定程度上可以认为,每个应用程序

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值